声速测量实验报告1Word文档下载推荐.docx

上传人:b****1 文档编号:13326889 上传时间:2022-10-09 格式:DOCX 页数:14 大小:696.99KB
下载 相关 举报
声速测量实验报告1Word文档下载推荐.docx_第1页
第1页 / 共14页
声速测量实验报告1Word文档下载推荐.docx_第2页
第2页 / 共14页
声速测量实验报告1Word文档下载推荐.docx_第3页
第3页 / 共14页
声速测量实验报告1Word文档下载推荐.docx_第4页
第4页 / 共14页
声速测量实验报告1Word文档下载推荐.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

声速测量实验报告1Word文档下载推荐.docx

《声速测量实验报告1Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《声速测量实验报告1Word文档下载推荐.docx(14页珍藏版)》请在冰豆网上搜索。

声速测量实验报告1Word文档下载推荐.docx

数据记录

距离d/mm

38.82

43.37

47.85

51.93

56.31

60.01

65.26

69.69

73.94

78.14

振幅A/v

1.88

1.84

1.68

1.56

1.36

1.64

1.60

1.24

表1.共振干涉法数据记录

环差法处理数据;

由实验原理可知,,且相邻两次接收信号到达极大值时接受面之间的距离为,取环差间隔为5,则这两个极大值对应个声波波长,传播时间间隔为,

序号/mm

序号/mm

平均差值

1:

38.32

21.19

2:

43.37

21.89

3:

47.85

21.84

21.752

4:

51.93

22.01

5:

56.31

21.83

平均波长:

表2.共振干涉法环差法处理数据

则平均声速计算公式为:

(1.3)

代入数据得:

348.032m/s.

相对误差:

2.2相位比较法

利用李萨如图形记录发射声波与接受声波之间的相位差,当二者为时,李萨如图形退化为倾角不同的两条直线。

如图所示:

 

图3.接受信号和发射信号相位差+时的李萨如图形

数据记录及环差法处理数据

37.93

41.90

46.38

50.81

55.20

59.48

63.66

68.01

72.31

76.55

表2.相位法数据记录

37.93

21.55

41.90

21.76

46.38

21.63

21.558

51.81

21.50

55.20

21.35

表4.环差法处理数据

344.928m/s.

比起共振干涉法来说,相位比较法具有更高的精确度,原因在于共振干涉法时,是通过人来辨别曲线峰值是否达到最大,而这个没有通过判断李萨如图形是否为一条直线来得精确,并且从实验中发现,曲线即使固定好距离,曲线峰值也是出于不断波动之中,对于人的判断干扰较大,相反,李萨如图形则比较稳定。

3时差法

数据记录

40.38

43.85

50.55

58.73

66.38

73.84

81.98

86.91

95.50

103.7

主机显示时间

252

257

277

307

331

353

362

372

405

428

示波器时间读数

253

264

280

304

336

352

368

375

510

430

表.5时差法数据记录

数据处理

A.利用最小二乘法,利用显示屏直接显示的实验数据点进行拟合,拟合图像如下:

图.4利用最小二乘法进行数据拟合

图5:

软件运算得到的相关参数截图

从matlab中读取拟合曲线方程为:

d

相关系数:

,非常接近与1,故拟合程度较高。

由此可得声速值为:

相对误差:

附:

相关系数计算公式:

B.利用示波器读取时间间隔。

示波器的时间间隔读法如下:

图.6接受波形图

操作示波器,先固定准线至发射器发射声波的位置1,此即为时间零点,再挪动准线至接收器接收到声波的位置2,此时示波器会自动显示1~2间的时间间隔。

355

表6.时间间隔数据记录

从数据记录表中发现,示波器读取的时间间隔比显示屏直接显示的要快1~6.

关于波包成因分析,见思考题。

4超声波测距

实际距离/mm

153.68

140.92

128.77

109.86

87.88

68.35

距离

144

127

113

95

72

50

9.68

13.92

15.77

14.86

15.88

18.35

表7.超声波测距数据记录

发现随着实际距离的增大,测量距离与实际距离的差减小,即测量越准确。

随着距离增大,得到的接收信号与发射信号的时间间隔相较于脉冲信号的周期来说长得多,因此得到的时间的相对误差会比较小。

5.课后题

(1.)压电陶瓷工作原理

压电陶瓷利用的原理是;

在机械应力作用下,内部正负电荷中心产生相对位移,从而发生极化,导致材料两端表面出现符号相反的束缚电荷,这是其正压电效应;

对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。

利用逆压电效应,可以把高频电脉冲转化为高频率的振动,从而产生了超声波

.

(2).压电陶瓷的固有频率由哪些因素决定?

一般物体振动的固有频率是由其形状决定的。

压电晶片在高频电脉冲激励下产生共振的条件是:

t:

晶片厚度:

晶片中纵波波长,晶片中纵波波速,:

晶片固有频率。

这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。

因此,同样的材料,制作高频探头时,晶片厚度较小;

制作低频探头时,晶片

厚度较大。

(3) 

时差法有哪些应用?

a.用于超声波流量计中

b.测量声速

c.衍射时差法探伤

(4)声速推导

从建立波动方程的角度推导较为繁琐,故利用动量定理给出一种简明推导方法。

考虑一个横截面积为A的圆管,左边为一可移动的活塞,将其作为声源。

内部气体密度为ρ

活塞的微小振动使其附近的压强发生变化,这种压强的变化在管中传播,产生了声波.

假定活塞向右移动速度是v(振动速度小于声传播速度),活塞上受到的外力是F,在时刻t压强发生变化的气体以声速u传播到距离为处,该处为动静气体的分界面,活塞移动的距离为.

考虑一个很短暂的时间间隔,波前传播的距离远小于一个波长,此时管中活塞附近的运动气体的气压改变量是Δp,也就是声压.

处于流动状态的气体的质量是

流动的气体获得的动量是

(5.4.2)

根据动量定理有(5.4.3)

外力F等于气体作用在活塞上的力的改变量,并等于管内压强的改变量乘以活塞的截面积,所以有

整理上式得到

在声音不是非常大的情况下,声速不依赖于声压的大小,并且不依赖于声源的振动速度,声传播的热力学过程是绝热过程.从热力学的结论可以知道,绝热过程的物态方程为

故:

体积的变化量是活塞移动造成的体积的减少量.由于管子的截面积是均匀的,体积的变化量与原体积的比可以用活塞移动的距离与声波传播的距离的比来表示,并且在同一段时间内,距离的比可以用速度的比来表示:

(5.4.8)

压强的变化量可以重写为

联立(5.4.5)和(5.5.9)可得:

将代入上式进行变换,可以得到:

(5.4.10)

(5)关于发射信号特点分析

通过观察发射信号的波形,发现首先其是一个脉冲波,其次每个脉冲波上升较缓慢,下降较急剧。

同时根据压电陶瓷的工作原理,即高频脉冲波激发其与之共振,则发射信号的频率应与压电陶瓷谐振频率大体一致,过高会导致输出功率降低,过低则不能达不到激发谐振的要求。

下面分析发射信号的占空比:

a.利用Photoshop精确采取一个发射周期内的波形

b.利用matlab将RGB图像转化为灰度图,再从中抽取一行像素点,如图所示。

利用代码实现可计算每两个蓝色像素点之间的距离,从而得到:

单个脉冲宽度以及三个脉冲总信号周期T

通过图片分写得到的占空比为:

=46.15%。

附1:

matlab代码:

c=imread('

Ê

±

²

î

·

¨

6.jpg'

);

b=rgb2gray(c);

a=zeros(1,49);

fori=1:

49

a(1,i)=b(60,i);

end

m=zeros(1,15);

s=0;

ifa(1,i)==177||a(1,i)==176

s=s+1;

m(1,s)=i;

end

附2:

matlab运算结果:

m=

3610192331354448

去掉第一个和最后一个数,经过简单加减运算得:

关于发射信号的幅值,应由激励电压值决定,激励电压给得越大,则压电陶瓷形变越大,因此产生的振动产生的声波越强,幅值会越大。

当然这多大的激励电压合适得由压电陶瓷自身性能比如压电常数,介电常数等决定,否则一味提高电压会导致输出功率降低。

(6)关于接受信号的波形分析

A.首先利用matlab提取出波形如图所示:

附3:

matlab提取波形提取代码

i=imread('

1.jpg'

figure

(1);

imshow(i);

g=rgb2gray(i);

a=zeros(359,592);

fork=1:

592

form=1:

359

ifg(m,k)==223||g(m,k)==224||g(m,k)==225||g(m,k)==222||g(m,k)==221||g(m,k)==220

a(m,k)=g(m,k);

else

a(m,k)=0;

figure

(2);

imshow(a);

然而不幸地发现,通过图片处理的手段,只能提将波形以图片格式显示,无法改成.wave格式,因此最开始想对波形做傅里叶变换的计划夭折。

B.对回波的分析。

由于“傅里叶变换”这一正向分析计划不幸夭折,故只能猜测回波形成原因,再利用软件模拟检验。

观察原始波形图发现,接受信号中有多个波包,并且波包整体的振幅

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1