变频器恒压供水系统单泵Word文档格式.docx

上传人:b****0 文档编号:13238991 上传时间:2022-10-08 格式:DOCX 页数:23 大小:119.97KB
下载 相关 举报
变频器恒压供水系统单泵Word文档格式.docx_第1页
第1页 / 共23页
变频器恒压供水系统单泵Word文档格式.docx_第2页
第2页 / 共23页
变频器恒压供水系统单泵Word文档格式.docx_第3页
第3页 / 共23页
变频器恒压供水系统单泵Word文档格式.docx_第4页
第4页 / 共23页
变频器恒压供水系统单泵Word文档格式.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

变频器恒压供水系统单泵Word文档格式.docx

《变频器恒压供水系统单泵Word文档格式.docx》由会员分享,可在线阅读,更多相关《变频器恒压供水系统单泵Word文档格式.docx(23页珍藏版)》请在冰豆网上搜索。

变频器恒压供水系统单泵Word文档格式.docx

变频器;

恒压供水;

变频调速;

供水系统;

 

1.变频调速恒压供水系统的现状和发展3

1.1变频调速恒压供水的目的和意义3

1.2变频调速及PLC在供水行业中的应用8

1.2.1变频调速技术的特点及应用8

1。

2.2可编程序控制器的特点及应用9

2.变频调速恒压供水系统11

2.1恒压供水控制系统构成11

2.2变频恒压控制理论模型12

3.变频恒压供水系统设计13

3.1设计任务及要求13

3.2系统主电路设计14

3.3控制系统组成方框图15

4.器件的选型及介绍17

4.1变频器简介17

4。

2变频器选型17

2.1变频器的控制方式17

2.2变频器容量的选择18

2。

3变频器主电路外围设备选择20

4.3可编程控制器(PLC)22

4.3.1PLC的定义及特点22

4.3.2PLC的工作原理23

4.3.3PLC及压力传感器的选择23

5.变频器参数的设置24

6.结束语26

7.参考文献27

1.变频调速恒压供水系统的现状和发展

1.1变频调速恒压供水的目的和意义

变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。

然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。

随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;

由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;

可以消除起动和停机时的水锤效应.其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。

变频调速技术的特点及应用

通常在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量小时开一台或两台.在采用变频调速进行恒压供水时,就用两种方式,其一是所有水泵配用一台变频器;

其二是每台水泵配用一台变频器.后种方法根据压力反馈信号,通过PID运算自动调整变频器输出频率,改变电动机转速,最终达到管网恒压的目的,就一个闭环回路,较简单,但成本高。

前种方法成本低,性能不比后种差,但控制程序较复杂,是未来的发展方向,比如NKL-A系列恒压供水控制系统就可实现一变频器控制任意数马达的功能.

可编程序控制器的应用

目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。

(1)开关量的逻辑控

  这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。

如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

(2)模拟量控制

  在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。

为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。

PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。

(3)运动控制

  PLC可以用于圆周运动或直线运动的控制。

从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。

如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。

世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。

3.过程控制

  过程控制是指对温度、压力、流量等模拟量的闭环控制.作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。

PID调节是一般闭环控制系统中用得较多的调节方法。

大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块.PID处理一般是运行专用的PID子程序.过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

4.数据处理

  现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。

这些数据可以及存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。

数据处理一般用于大型控制系统,如无人控制的柔性制造系统;

也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。

5.通信及联网

  PLC通信含PLC间的通信及PLC及其它智能设备间的通信.随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。

新近生产的PLC都具有通信接口,通信非常方便。

6。

可编程变频恒压供水控制系统的设计

(1)变频器的节能、调速原理

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。

一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。

因此浪费大量电能,属不经济的调节方式.从流体力学原理可知,风机的风量、水泵的流量及电机转速及电机功率的关系如下:

当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,采用变频器调速方式有很强的节电效果,其节电可达30-40%效果十分明显。

(2)变频器控制方式的选择

低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交-直—交电路。

其控制方式经历了以下四代。

7.U/f=C的正弦脉宽调制(SPWM)控制方式

  其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小.另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等.因此人们又研究出矢量控制变频调速。

(1)电压空间矢量(SVPWM)控制方式

它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的.经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;

通过反馈估算磁链幅值,消除低速时定子电阻的影响;

将输出电压、电流闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善.

(2)矢量控制(VC)方式

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;

It1相当于及转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

(3)直接转矩控制(DTC)方式

1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。

该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。

目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。

它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;

它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

(4)矩阵式交—交控制方式

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直-交变频中的一种。

其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行.为此,矩阵式交—交变频应运而生。

由于矩阵式交-交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。

它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大.该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究.其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

矩阵式交-交变频具有快速的转矩响应(〈2ms),很高的速度精度(±

2%,无PG反馈),高转矩精度(〈+3%);

同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。

因此,我们选用最后一种控制方式,矩阵式交-交控制方式。

近年来我国中小城市发展迅速,集中用水量急剧增加。

据统计,从1990年到1998年,我国人均日生活用水量(包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,及此同时我国城市家庭人均日生活用水量也在逐年提高.在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大.由于每天不同时段用水对供水压力的要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。

这种情况造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。

供水厂希望通过对原有系统的技术改造,提高生产过程的自动化水平。

并在此基础之上配备相应的系统管理软件,改变传统的落后管理方式,使管理工作规范化,提高水厂的业务管理水

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1