等腰三角形的性质练习题及答案Word文档下载推荐.doc

上传人:b****1 文档编号:13137742 上传时间:2022-10-06 格式:DOC 页数:6 大小:374.50KB
下载 相关 举报
等腰三角形的性质练习题及答案Word文档下载推荐.doc_第1页
第1页 / 共6页
等腰三角形的性质练习题及答案Word文档下载推荐.doc_第2页
第2页 / 共6页
等腰三角形的性质练习题及答案Word文档下载推荐.doc_第3页
第3页 / 共6页
等腰三角形的性质练习题及答案Word文档下载推荐.doc_第4页
第4页 / 共6页
等腰三角形的性质练习题及答案Word文档下载推荐.doc_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

等腰三角形的性质练习题及答案Word文档下载推荐.doc

《等腰三角形的性质练习题及答案Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《等腰三角形的性质练习题及答案Word文档下载推荐.doc(6页珍藏版)》请在冰豆网上搜索。

等腰三角形的性质练习题及答案Word文档下载推荐.doc

A.30°

D.32°

C36°

D.40°

(武汉市选拔赛试题)

思路点拨图中有很多相关的角,用∠BAC的代数式表示这些角,建立关于∠BAC的方程.

【例3】如图,在△ABC中,已知∠A=90°

,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:

当点D满足什么条件时,∠ADB=∠CDF,请说明理由.

(安徽省竞赛题改编题)

思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用?

因∠ADB与∠CDF对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线.

【例4】如图,在△ABC中,AC=BC,∠ACB=90°

,D是AC上一点,AE⊥BD交BD的延长线于E,且AE=BD.求证:

BD是∠ABC的角平分线.

(北京市竞赛题)

思路点拨AE边上的高与∠ABC的平分线重合,联想到等腰三角形,通过作辅助线构造全等三角形、等腰三角形.

注若巳知图形中不存在证题所需的全等三角形,我们需要添加辅助战,构造全等三角形,使欲证的线段或角转移位置,最终使问题得以解决.

结论探索型、条件探索型、存在性判断是探索型问题的基本形式,相应的解题策略是:

(1)通过对符合条件的特例或简单情形的分析、观察、猜想结果,再给出证明;

(2)假设结论成立,逆推追寻相应的条件;

(3)假设在题设条件下的某一数学对象存在,进行推理,若由此导出矛盾,则否定假设;

否则,给出肯定的结论.

【例5】如图,在△ABC中,已知∠C=60°

,AC>

BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC

(1)证明:

△C′BD≌△B′DC;

(2)证明:

△AC′D≌△DB′A;

(3)对△ABC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?

(江苏省竞赛题)

思路点拨

(1)是基础,

(2)是

(1)的自然推论,(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.

学力训练

1.如图,△ABC中,已知AD=AC,要使AD=AE,需要添加的一个条件是.

(济南市中考题)

2.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为.

3.△ABC中,AB=AC,∠A=40°

,BP=CE,BD=CP,则∠DPF=度.

4.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是.

(烟台市中考题)

5.△ABC的一个内角的大小是40°

,且∠A=∠B,那么∠C的外角的大小是()

A.140°

B.80°

或100°

C.100°

或140°

D.80°

6.已知△ABC中,AB=AC,∠BAC=90°

,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,给出以下四个结论:

①AE=CF;

②△EPF是等腰直角三角形,③S=S;

④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的是()

A.1个B.2个C.3个D.4个

(苏州市中考题)

7.如图,在△ABC中,∠ACB=90°

,AC=AE,BC=BF,则∠ECF=()

A.60°

B.45°

C.30°

D.不确定

8.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()

A.45°

D.55°

C.60°

D.75°

(菏泽市中考题)

9.在△ABC中,已知AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,试求厶ABC各内角的度数.

(广州市中考题)

10.如图,已知A、D两点分别是正三角形DEF、正三角形ABC的中心,连结GH、AD,延长AD交BC于M,延长DA交EF于N,G是FD与AB的交点,H是ED与AC的交点.

(1)请写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程);

(2)问FE、GH、BC有何位置关系?

试证明你的结论.

(江西省中考题)

11.如图,在Rt△ABC中,已知∠ACB=90°

,AC=BC,D为DC的中点,CE⊥AD于E,BF∥AC交CE的延长线于点F.求证:

AB垂直平分DF.

(河南省中考题)

12.如图,O为等边三角形ABC内一点,BD=DA,BE=AB,∠DBE=∠DBC,则∠BED的度数是.

(河南省竞赛题)

13.如图,AA′、BB′分别是∠EAO、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为.(全国初中数学联赛题)

14.周长为100,边长为整数的等腰三角形共有种.

(“华杯赛”试题)

15.已知等腰三角形的两边a、b满足=0,则此等腰三角形的周长为.

16.如图,在△ABC中,∠BAC=120°

,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()

A.20°

B.25°

D.45°

17.如图,在等腰直角△ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰相交于E、F,连结EF与AD相交于G,则∠AED与∠AGF的关系为()

A.∠AED>

∠AGFB.∠AED=∠AGFC.∠AED<

∠AGFD.不能确定

(“学习报)公开赛试题)

18.如图,直线、、表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()

A.一处B.两处C.三处D.四处

(安徽省中考题)

19.△ABC的三边为a、b、c,且满足,则△ABC是()

A.直角三角形B.等腰三角形C.等边三角形D.以上答案都不对

(河南省竞赛题)

20.如图,在△ABC中,AB=AC,P底边BC上一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F.

(1)求证:

PD+PE=CF;

(2)若P点在BC的延长线上,那么PD、PE、CF存在什么关系?

写出你的猜想并证明.

21.如图,在等腰直角△ABC中,∠BAC=90°

,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:

BG=AF+FG.(重庆市竞赛题)

22.如图,在△ABC中,AB=AC,∠BAC=80°

,O为△ABC内一点,且∠OBC=10°

,∠OCA=20°

,求∠BAO的度数.(天津市竞赛题)

23.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于Q,设BP=x,AQ=y.

(1)用x的代数式表示y;

(2)当PB的长等于多少时,点P与点Q重合?

(福州市中考题)

24.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°

的等腰三角形,以D为顶点作一个60°

角,角的两边分别交AB于M,交AC于N,连结MN,形成一个三角形,求证:

△AMN的周长等于2.

6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1