论文范文湿空气热力过程的火用分析Word下载.docx

上传人:b****1 文档编号:13119657 上传时间:2022-10-05 格式:DOCX 页数:9 大小:16.20KB
下载 相关 举报
论文范文湿空气热力过程的火用分析Word下载.docx_第1页
第1页 / 共9页
论文范文湿空气热力过程的火用分析Word下载.docx_第2页
第2页 / 共9页
论文范文湿空气热力过程的火用分析Word下载.docx_第3页
第3页 / 共9页
论文范文湿空气热力过程的火用分析Word下载.docx_第4页
第4页 / 共9页
论文范文湿空气热力过程的火用分析Word下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

论文范文湿空气热力过程的火用分析Word下载.docx

《论文范文湿空气热力过程的火用分析Word下载.docx》由会员分享,可在线阅读,更多相关《论文范文湿空气热力过程的火用分析Word下载.docx(9页珍藏版)》请在冰豆网上搜索。

论文范文湿空气热力过程的火用分析Word下载.docx

0引言

(exergy)分析是研究能量转化的重要方法,已在能源领域得到广泛的应用。

在空调领域,由于在处理湿空气的时候既存在热量的传递又存在物质的传递(湿度的变化),使得湿空气的分析复杂程度增加。

在能源、化工、材料等领域的分析方法已经发展得比较完善,很多可以借鉴到湿空气处理过程中。

但是,针对空调的具体应用条件,侧重点有所不同。

分析的关键问题是参考点的选择,下面简要介绍一下历史上对零参考点的论述。

从60年代末至今,关于参考状态选择的争论从来没有停止过。

所谓参考状态是人为定义的一个环境状态,它实质是一个在一定压力下的无穷大的热源和无穷大的物质源。

参考状态不是随意选定的,对于参考状态的选择原则,Brodjanskij指出作为参考状态的环境介质模型应该具备3个条件:

一、与系统作用时保持不变;

二、环境介质应该在热力学平衡的范围内;

三、接近实际运行的条件或不能相差太远。

至今已经提出了许多环境模型来确定参考状态,如Ahrendts的环境模型、Szargut的环境模型以及Kameyama和Yoshida环境模型以及郑丹星等提出的环境模型等。

这些模型并不是专门针对湿空气,而是涵盖了能源、化工、材料等等诸多领域的第二定律分析的参考点,其中包涵了自然界中所有存在的物质,涉及到每种化学元素复杂形态。

专门针对湿空气分析的理论最早是由Szargut(1969)和Wepferetal.(1979)提出的,后来陆续有国内外学者如朱明善(1985),Moran(1989),Bejan(1996,1997)等对该理论进行过阐述。

继之,有学者应用热力学第二定律的思想来思考湿空气的热力学过程,JungYangSan(1985),Cammarata(1997),Fratzscher(1997),任承钦等应用该理论分析实际的湿空气处理过程,湿空气分析问题的焦点是环境参考点的选择,不同参考点令分析结果大相径庭。

已经有大量的文献对环境状态的选择的文献做过综述,由于篇幅限制本文只对涉及到湿空气分析参考点的选择进行归纳。

总结所有的环境模型,大致可以将它们分为以下三类:

1) 取环境大气参数作为分析参考点;

2) 取环境大气平均气象参数作为分析的参考点;

3) 取环境温度下的饱和空气状态为分析的参考点。

其中第一种取法目前最为广泛的被采用。

Wepferetal.(1979)选择ARI的标准室外工况作为湿空气的零状态,推导了湿空气的的表达式,并分析了基本的几个湿空气处理过程。

JungYangSan(1985)利用该参考点分析的转轮除湿冷却系统的耗散。

在Moran(1989)及Bejanetal.(1996,1997)的著作中,对湿空气的分析的理论进行的综述,介绍及分析该理论时采用的参考点为ARI的标准室外工况。

Cammarataetal,(1997)采用了与Moran同样的方法,对全空气系统进行了经济分析及优化。

以上的分析的共同特点都是选取的ARI的标准室外状态为参考点的。

第二种参考点的取法实质上跟第一种取法没有本质区别,只是考虑了室外状态的波动,取某一时段平均气象参数为分析的参考点。

开创这种参考状态选取办法的是东欧的J.Szargut和Styrylska(1969)。

之后,Brodjanskij总结了局部环境介质的概念,采用局部环境模型来分析热力过程;

并且还做过空调系统的分析的计算,取用的湿空气的零参考点分时间区段计算环境参数平均值。

前两种参考点的确定都是选取大气参数,而大气一般是不饱和的,不饱和的空气与水接触,会有一定的吸水能力。

第三类参考点的选取方式就是考虑到空气与水的平衡状态,选择环境温度下饱和空气为零参考点。

Ahrendts的环境模型与Kameyama和Yoshida环境模型就是选取的饱和湿空气作为零参考点。

KoroKato(1985)在对干燥过程进行分析的时候,采用饱和湿空气作为零参考点。

另外,任承钦(2001)在用不饱和室外状态为零参考点分析表冷器效率时,发现如此算出的表冷器的效率极低,在选择饱和湿空气为参考点分析后得到了更为理想的结果。

本文在分析选择零值参考点的基础上,着重研究了利用不饱和湿空气和水以及具有吸放湿能力的介质,在不投入其它能源的情况下,忽略风机水泵的能耗,可以得到高于常温的热源,较低温度的冷源以及比大气更干燥的空气。

通过对上述问题的分析,验证了零值参考点选择的合理性。

进而从热力学第二定律出发,探讨各种湿空气处理过程中的可用能转换规律以及自然界非饱和空气中可用能利用的可行性。

1湿空气分析参考状态的选择在空调系统中,湿空气参考点应选用上述第三种选择方法。

具体理由阐述如下:

空调设备所针对的现实环境中空气和水都是大量存在物质,可以认为是无代价可以得到的物质。

把空气作为无限大的热源,水作为无限大的水蒸汽源,不饱和湿空气和水尚未达到热力学平衡态,不饱和空气与水接触会自发发生水蒸发、空气趋向饱和态的过程。

这种自发进行的过程进行的终点就是上述的饱和点,即0值参考点。

这个点应该是大气温度下的饱和湿空气状态点,如图1所示。

该点为水与空气这两个无限大源接触所能够实现的嫡值最大的点。

这个点针对每一个具体的工况来说是唯一的。

根据我们选定的参考点,就可以计算各个状态下湿空气的,就可以在复杂的热湿交换过程中判断某一过程的的利用情况。

而且,利用上述方法可以分析自然界中不饱和大气中蕴藏的。

参考点的状态参数可表示为:

大气压力PO(Pa),温度为TO(K),含湿量为wO(kg/kg干空气);

干空气气体常数Ra=0.287kJ/kgK,水蒸气的气体常数Rv=0.461kJ/kgK,干空气的定压比热

cp,a=l.003kJ/kgK,水蒸气的定压比热cp,v=l.872kJ/kgK,湿空气的用E表示,才艮据Bejan(1997)湿空气的表达式,以此参考点的任意湿空气状态(P,T,w)的表达式为:

(1)

公式

(1)中的第一项表代表湿空气中热的,即表示由于温差而具有的;

第二项代表机械的,在我们研究的恒压开式系统范畴内,这一项为零,本文后文如无特殊说明,大气压都为P0=101325Pa的情况;

第三项代表湿空气的化学,是在研究湿空气热力过程主要要考虑的部分。

根据公式

(1),选择环境空气温度为37.8°

C,则参考点状态为温度37.8°

C,相对湿度为100%。

图2为计算得到的湿空气随温度t

(C),w(kg/kg干空气)变化的情况。

图2湿空气的

参考点选择在饱和状态,使得常压下液态水可以被看作只具有热量,而无化学,由于湿空气处理中,参与在过程中的水量相对量很少,其热量的影响可忽略。

这种做法是切合实际运行条件的。

2不饱和湿空气间接蒸发冷却过程

根据我们选定的参考点,就可以计算各个状态下湿空气的,就可以在复杂的热湿交换过程中判断某一过程的利用情况。

而且,自然界中比如比较热干的环境就有我们可以利用的能量,可以分析这些能量可利用的潜力。

图2是一张湿空气的的图,图中可以清晰的看到在坐标所示的温湿度范围内湿空气的的大小。

气压不变的情况下,湿空气的包括扩散和热能,扩散和热能部分可以相互转化。

有很多的途径可以实现这种转化,如可以通过直接或间接蒸发式冷却来得到冷量,输出较低温度的水或低温但加了湿的空气。

水表面和湿空气内的水蒸汽分压力差是产生冷量的直接动力,类似于蒸汽压缩式制冷中,压缩机所维持的不同压力区一样。

理想的即能够把湿空气的化学完全释放,转化为冷量的过程应是如图3所示。

该循环的核心思想是采用逆流换热、逆流传质来减小不可逆损失,以得到较低的供冷温度和较大的供冷量。

如图所示,空气在和水接触前,先经过逆流汽水换热器1被冷却,换热器的冷源是与空气接触被蒸发冷却的水,这部分水的温度理论极限值应该是空气的露点温度。

被冷却后的循环水的另一部分被用来作为冷水输出冷量。

与空气交换显热后温度较高的水,在直接接触换热器2内与空气直接接触。

这个过程也是逆流的,空气被加湿,升温,水被冷却。

如此完成循环,不断制出冷水。

整个过程进行的过程在温湿图上表示如图4所示。

图5所示的是理想的处理过程,进风被冷却到了露点,而且排风的状态达到了进风的干球温度的饱和状态。

根据这个过程,可以得到公式

(1)的化学即扩散的一种推导方法。

由于湿空气中的干空气由A状态到C状态没有变化,只是B状态到C状态输出了冷量,并且吸收了外界的水。

这部分吸收来的水是有的,公式

(1)中对这部分水的没有考虑,为了与公式

(1)结果吻合,这里也不作考虑。

这样的处理带来的误差经分析是可以被忽略的。

篇幅所限,该设备的计算分析本文没有包括。

通过对间接蒸发供冷装置的研究,可以清晰的认识湿空气化学和热量的转化过程,是对参考点选择的合理性最好的诠释。

3不饱和湿空气的转化基于湿空气理论,可以提出下面各个过程,都是采用自然界存在的物质,采用循环过程中不发生变化的介质,得到制热、制冷、加湿或除湿的目的。

各个过程的推动力都是湿空气具有的。

1) 不饱和空气的加湿冷却过程。

由于不饱和空气有容纳水蒸汽的能力,所以跟水相互作用,自发发生水蒸发,空气被加湿的过程。

该过程为吸热过程,可以使温度降低。

采用间接蒸发冷却的设备可以把环境空气无代价的处理到干球温度以下,露点温度以上,湿度直至饱和的区域内任一点。

2) 吸湿介质的再生过程。

吸湿介质如溶液及固体吸附材料等,与不饱和的大气接触,发生吸湿或放湿过程,其最终达到的表面水蒸汽分压力与大气的水蒸汽分压力相同。

若介质发生放湿过程,则称为介质被再生。

3) 吸湿介质除湿过程。

被再生的吸湿介质,与比大气含湿量高,温度相同或更低的空气接触,就会吸收空气中的水蒸汽。

该过程为放热过程,温度升高。

通过以上三个过程的组合,在吸湿介质(下文中采用有吸放湿能力的溶液)的参与下,利用不饱和湿空气和水,可以实现制热、制冷、加湿和除湿的目的。

具体实施的流程如下图:

1) 0点为大气的状态,起通过加湿冷却过程及与环境的换热可以实现O-A-B-0围成的状态,其中A-B为100%相对湿度线。

该过程可以实现加湿和制冷的目的。

2) 利用大气再生得到具有一定吸湿能力的溶液,与B点的湿空气接触,发生吸湿过程,不考虑溶液的显热,可以空气可以被等修的处理到C点。

该过程的温度升高,可以实现制热的目的。

进而,如果采用环境来冷却该过程,O-B-C-0围成的区域也可以实现。

3) 利用大气再生得到的与0点有相同水蒸汽分压力的溶液,与A点的湿空气接触,发生吸湿过程,不考虑溶液的显热,可以空气可以被等燃的处理到D点。

该过程得到比大气更干燥的空气。

进而,O-D-A-0围成的区域也可以实现。

4)利用上诉的各个过程的组合,可以得到其他状态的空气。

如利用C点的热加热状态。

的空气,可以得到比。

点温度高而湿度跟0点相同的空气,用该空气可以再生溶液,得到比用0点再生得到的更浓的溶液,通过过程2)可以得到比C点更高的温度;

C点通过加湿,可以得到比B点更湿的空气;

D点的空气,可以通过蒸发冷却,得到比A点温度更低的制冷效果;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1