年处理量为15万吨的热水冷却换热器设计Word文件下载.doc

上传人:b****1 文档编号:13113437 上传时间:2022-10-05 格式:DOC 页数:24 大小:1.70MB
下载 相关 举报
年处理量为15万吨的热水冷却换热器设计Word文件下载.doc_第1页
第1页 / 共24页
年处理量为15万吨的热水冷却换热器设计Word文件下载.doc_第2页
第2页 / 共24页
年处理量为15万吨的热水冷却换热器设计Word文件下载.doc_第3页
第3页 / 共24页
年处理量为15万吨的热水冷却换热器设计Word文件下载.doc_第4页
第4页 / 共24页
年处理量为15万吨的热水冷却换热器设计Word文件下载.doc_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

年处理量为15万吨的热水冷却换热器设计Word文件下载.doc

《年处理量为15万吨的热水冷却换热器设计Word文件下载.doc》由会员分享,可在线阅读,更多相关《年处理量为15万吨的热水冷却换热器设计Word文件下载.doc(24页珍藏版)》请在冰豆网上搜索。

年处理量为15万吨的热水冷却换热器设计Word文件下载.doc

2.2热负荷及传热面积的确定 6

2.2.1热负荷 6

2.2.2平均传热温差校正及壳程数 7

2.2.3初算传热面积 7

2.3换热器主要结构尺寸的确定 7

2.3.1管径和管内流速 7

2.3.2管程数和传热管数 7

2.3.3壳程数 8

2.3.4传热管排列和分程方法 8

2.3.5壳体直径 9

2.3.6折流板 10

2.3.7接管 10

2.4换热器核算 10

2.4.1传热面积校核 10

2.4.2换热器内压降的核算 13

3设计结果汇总表 16

4结果与讨论 17

5心得体会 18

6参考文献 19

附录 20

摘要

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,液体汽化成蒸汽或者把蒸汽冷凝成液体。

这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。

本设计就是利用相关知识,设计出达到工艺所规定的要求,同时强度、结构可靠,便于制造、安装和检修,以及经济上合理的列管式换热器,满足生产需要。

本设计以循环水和热水为介质,按实际设计步骤进行计算、核算和结构设计。

主要研究内容如下:

1、对换热器的分类、材料和运用进行阐述,了解换热器的基本结构和基本原理。

2、通过查阅换热器设计相关标准得出的数据,对固定管板式换热器进行设计,具体分为换热器的传热计算、核算和结构设计。

3、换热器的外部设计包括它的板管的设计、封头的设计、管箱和折流挡板的设计。

4、换热器的内部设计包括:

它的换热管的尺寸、固定管板的厚度以及折流挡板的尺寸。

关键词:

换热器设计计算固定管板式

食品工程原理课程设计任务书

1.设计题目年处理量为 2.5  万吨热水冷却换热器设计

2.操作条件

设备型式:

列管式换热器

操作条件:

(1)冷却介质:

循环水入口温度:

22℃,出口温度:

40℃井水,入口压强0.3MPa。

(2)热水:

入口温度:

80℃,出口温度:

60℃

(3)允许压降:

不大于105Pa

(4)每年按330天计,每天24小时运行

(5)允许压强降:

不大于30kPa。

(6)换热器热损失:

以总传热量的5%计。

3.设计任务

(1)选择适宜的列管式换热器并进行核算。

(2)工艺设计计算

包括选择适宜的换热器并进行核算,主要包括物料衡算和热量衡算、热负荷及传热面积的确定、换热器主要尺寸的确定、总传热系数的校核等。

(注明公式及数据来源)

(3)结构设计计算

选择适宜的结构方案,进行必要的结构设计计算。

主要包括管程和壳程分程、换热管尺寸确定、换热管的布置、折流板的设置等。

(4)绘制工艺流程图

绘制设备工艺条件图一张或设备装配示意图(2号图纸);

CAD绘制。

(5)编写设计说明书

设计说明书的撰写应符合规范与要求。

1概述与设计方案的选择

1.1概述

1.1.1换热器的分类

换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。

由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。

按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。

根据冷、热流体热量交换的原理和方式可分为三大类:

混合式、蓄热式、间壁式。

管壳式换热器包括了广泛使用的列管式换热器以及夹套式、套管式、蛇管式等类型的换热器。

其中,列管式换热器被作为一种传统的标准换热设备,在许多工业部门被大量采用。

1.1.2列管式换热器的分类与特点

列管式换热器是目前化工上应用最广的一种换热器。

它主要由壳体、管板、换热管、封头、折流挡板等组成。

所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。

在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;

另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:

1.1.2.1.固定管板式换热器

 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

  为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。

一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

1.1.2.2.U型管式换热器:

U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。

管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

优点是结构简单,质量轻,适用于高温高压条件。

1.1.2.3.浮头式换热器:

 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

其优点是:

管束可以拉出,以便清洗;

管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

1.1.2.4.填料函式换热器:

这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

1.2设计方案的选择

1.2.1选择换热器的类型

热流体进口温度80℃,出口温度60℃;

冷流体进口温度22℃,出口温度40℃。

两流体平均温度差(-)=39小于50,根据列管式换热器的分类与特性表,结合上述工艺要求,故选用固定管板式换热器。

1.2.2流动空间及流速的确定

1.2.2.1流动空间的确定

工艺设计计算在列管式换热器设计中,冷、热流的流程,进行合理安排,一般应考虑以下原则。

①易结垢流体应走易于清洗的侧.对于固定管板式、浮头式换热器,一般应使易结垢流体流经管程,而对于l一I钾换热器,易结垢流体应走壳程。

‚有时在设计上需要提高流体的速度,以提高其表面传热系数,在这种情况下,应将需要提高流速的流体放在管程。

这是因为管程流通截面积一般较小,且易于采用多用管程结构以提高流速。

③其有腐蚀性的流体应走管程,这样可以节约耐腐蚀材料用降低换热器成本。

④压力高的流体应走管程。

这是因为管子直径小,承压能力强,能够避免采用耐压的壳体和密封措施。

⑤具有饱和蒸汽冷凝的换热器,应使饱和蒸汽走壳程,便于排出冷凝液。

⑥粘度大的流体应走壳程,因为壳程内的流体在拆流板的作用下,流通截面和方向都不断变化,在较低的雷诺数下就可达揣流状态。

应该说明的是,上述要求常常不能同时满足,在设计中应考虑其中的主要问题,首先满足其中较为重要的要求。

由于当液体温度升高时,粘度随着减小,故有循环水走壳程,因为壳程内的流体在拆流板的作用下,流通截面和方向都不断变化,在较低的雷诺数下就可达揣流状态。

在两流体的粘度力看,应该使热水走管程,循环冷却水走壳程,但是由于循环冷却水易结垢,若其流速太低,将会加快污垢的增长速率,使换热器热流量下降,所以,从总体考虑,应该使热水走壳程,循环冷却水走管程。

1.2.2.2流体流速的确定

流体的流速对传热来说非常的重要,因为在滞留层的传热是一热传导为主,热传导的传热速率小于对流传热。

所以如果流速太小它形成的滞留层会很厚,会大大减小传热速率,又因如果流速太小杂质会在壁面沉积也会导致传热速率的下降,提高流体在换热器中的流速,可以增大对流体传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增加,所需要传热面积减少,设备费用降低。

但是流速增加,流体阻力将相应加大,使操作费用增加。

所选择流速时应该综合考虑。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;

单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

下表列出工业一般采用的流体流速范围。

表1-1

介质

循环水

新鲜水

低粘度油

高粘度油

易结垢体

一般液体

管程m/s

1.0-2.0

0.8-1.5

0.8-1.8

0.5-1.5

>1.0

0.5-3

壳程m/s

0.4-1.0

0.3-0.8

>0.5

0.2-1.5

根据流体在直管内常见适宜流速,管内循环冷却水的流速初选为=1.0m/s,管子选用的较好级冷拔碳钢管换热管(换热管标准:

GB8163)。

2工艺设计计算

2.1确定物性数据

定性温度:

壳程热水的定性温度为

T=℃

管程循环冷却水的定性温度为

t=℃

表2-1

热水在70℃下有关物性数据循环冷却水在31℃下的物性数据

密度密度

定压比热容定压比热容

导热系数导热系数

粘度粘度

2.2热负荷及传热面积的确定

2.2.1热负荷

考虑到热损失为5%

2.2.2平均传热温差校正及壳程数

查得温度校正系数

平均传热温差:

由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

2.2.3初算

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1