(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc

上传人:b****1 文档编号:13075045 上传时间:2022-10-04 格式:DOC 页数:61 大小:1.63MB
下载 相关 举报
(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc_第1页
第1页 / 共61页
(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc_第2页
第2页 / 共61页
(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc_第3页
第3页 / 共61页
(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc_第4页
第4页 / 共61页
(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc_第5页
第5页 / 共61页
点击查看更多>>
下载资源
资源描述

(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc

《(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc》由会员分享,可在线阅读,更多相关《(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc(61页珍藏版)》请在冰豆网上搜索。

(完整版)最新人教版七年级下数学教案(表格式) (1)Word下载.doc

教师出示一块布和一把剪刀,表演剪布过程,提出问题:

剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?

剪刀张开的口又怎么变化?

教师点评:

如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?

根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达:

有一条公共边OA,它们的另一边互为反向延长线;

有公共的顶点O,而且的两边分别是两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:

相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交

所形成的角

分类

位置关系

数量关系

教师提问:

如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用

练习:

下列说法对不对

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四.巩固运用

例题:

如图,直线a,b相交,,求的度数。

[巩固练习]

已知,如图,,求:

的度数

[小结]邻补角、对顶角.

[作业]:

[备选题]

一判断题:

1.如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角()

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补()

二填空题

1如图,直线AB、CD、EF相交于点O,的对顶角是,的邻补角是

若:

=2:

3,,则=

2如图,直线AB、CD相交于点O,则

教师备注

教学反思:

七年级数学备课组集体备课教案

5.1.2垂线

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

垂线的定义及性质。

垂线的画法。

一.复习提问:

1.叙述邻补角及对顶角的定义。

2.对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?

日常生活中有没有这方面的实例呢?

下面我们就来研究这个问题。

(一)垂线的定义:

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作,垂足为O。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1.如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:

(如上图)

(二)垂线的画法探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

教材第7页

探究:

如图,连接直线l外一点P与直线l上各点O,A,B,C,……,

其中(我们称PO为点P到直线l的垂线段)。

比较线段PO、

PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:

垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点P到直线l的距离。

例1

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有()

A.1个B.2个

C.3个D.4个

例2:

如图,直线AB,CD相交于O,

解:

A

例3如图,一辆汽车在直线形公路AB上由A向B行驶,M,N分别是位于公路两侧的村庄,设汽车行驶到点P位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

1.

2.教材第8页4、5、6教材第10页10、12

小结:

要掌握好垂线、垂线段、点到直线的距离这几个概念;

要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

作业:

课后反思:

5.2.1平行线

1.理解平行线的意义,了解同一平面内两条直线的位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;

5.了解平行线在实际生活中的应用,能举例加以说明.

平行线的概念与平行公理

对平行公理的理解

一、复习提问

相交线是如何定义的?

二、新课引入

平面内两条直线的位置关系除平行外,还有哪些呢?

制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.

三、同一平面内两条直线的位置关系

1.平行线概念:

在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)

2.同一平面内两条直线的位置关系有两种:

(1)相交;

(2)平行.

3.对平行线概念的理解:

两个关键:

一是“在同一个平面内”(举例说明);

二是“不相交”.

一个前提:

对两条直线而言.

4.平行线的画法

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:

一“落”(三角板的一边落在已知直线上),

二“靠”(用直尺紧靠三角板的另一边),

三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),

四“画”(沿三角板过已知点的边画直线).

四、平行公理

1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.

2.平行公理:

经过直线外一点,有且只有一条直线与这条直线平行.

提问垂线的性质,并进行比较.

3.平行公理推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行.

即:

如果b∥a,c∥a,那么b∥c.

五、三线八角

由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.

六、课堂练习

1.在同一平面内,两条直线可能的位置关系是.

2.在同一平面内,三条直线的交点个数可能是.

3.下列说法正确的是()

A.经过一点有且只有一条直线与已知直线平行

B.经过一点有无数条直线与已知直线平行

C.经过一点有一条直线与已知直线平行

D.经过直线外一点有且只有一条直线与已知直线平行

4.若∠与∠是同旁内角,且∠=50°

,则∠的度数是()

A.50°

B.130°

C.50°

或130°

D.不能确定

5.下列命题:

(1)长方形的对边所在的直线平行;

(2)经过一点可作一条直线与已知直线平行;

(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;

(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()

A.1B.2C.3D.4

6.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1∠3.

七、小结让学生独立总结本节内容,叙述本节的概念和结论.

八、作业:

________________________________

[补充内容]

1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

2.在同一平面内,两条直线的位置关系仅有两种:

相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?

(用长方体来说明)

5.2.2平行线的判定(第1课时)

1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.

2.经历

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1