数学建模传染病模型剖析Word文件下载.doc

上传人:b****9 文档编号:13067509 上传时间:2022-10-04 格式:DOC 页数:14 大小:1.01MB
下载 相关 举报
数学建模传染病模型剖析Word文件下载.doc_第1页
第1页 / 共14页
数学建模传染病模型剖析Word文件下载.doc_第2页
第2页 / 共14页
数学建模传染病模型剖析Word文件下载.doc_第3页
第3页 / 共14页
数学建模传染病模型剖析Word文件下载.doc_第4页
第4页 / 共14页
数学建模传染病模型剖析Word文件下载.doc_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

数学建模传染病模型剖析Word文件下载.doc

《数学建模传染病模型剖析Word文件下载.doc》由会员分享,可在线阅读,更多相关《数学建模传染病模型剖析Word文件下载.doc(14页珍藏版)》请在冰豆网上搜索。

数学建模传染病模型剖析Word文件下载.doc

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS的传播建立数学模型,具体要求如下:

1)建立传染病传播的指数模型,评价其合理性和实用性。

2)建立你们自己的模型,说明为什么优于指数模型;

特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?

对于卫生部门所采取的措施做出评论,如:

提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件1提供的数据供参考。

3)说明建立传染病数学模型的重要性。

2定义与符号说明

N…………………………………表示为SARS病人的总数;

K(感染率)……………………表示为平均每天每人的传染他人的人数;

L…………………………………表示为每个病人可能传染他人的天数;

N(t)…………………………表示为每天(单位时间)发病人数;

N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;

t…………………………………表示时间;

R………………………………表示拟合的均方差;

3建立传染病传播的指数模型

3.1模型假设

1)该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。

单位时间(一天)内一个病人能传播的人数是常数k;

2)在所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k;

3)病者在潜伏期传播可能性很小,仍按健康人处理;

4)SARS对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;

5)我们所采取的隔离是非常严格的,被隔离的病人不会再感染其他人;

3.2模型的分析和建立求解

全国疫情从出现第一例病人起,到4月20日前后(从起点起45天左右)是疫情高峰,在此之前k值我们取k=0.16204,在此后的时间里我们取k=0.0273来计算。

根据提供的数据可以建立指数模型:

N(t)=n(1+K)。

在前45天我们取k=0.16204来代入,分别算出45天的病人累计数,根据45天中

天病人的数量来画出图1,并与附件中所提供的数据中的日累计数来进行了比较。

如图3-1所示:

图3-1根据指数模型建立的图形

图3-2根据附件1所建立的图形

从两个图形中,我们可以看出,从4月20日开始计算,前45天的病人累计数和我们用k的值来代入模型画出的病人计算数基本上是吻合的。

图形1中的横坐标数字表示时间的天数,如15即4月20日之后的第15天,40即4月20日之后的第40天。

在45天之后的时间里,模型对k的值进行了调整,k=0.0273,我们再将k=0.0273代入模型N(t)=n(1+K),在45天之后的时间里,我们取了30天的时间,分别算出每天的病人累计数,如图3-3所示:

图3-3

3.3对指数模型的验证和评价

在图形3-3中的横坐标的数值表示图形1中所表示的天数之后的天数,如1即表示4月15日之后的45天之后的有第六天,也就是4月15日之后的第51天,即表示4月15日之后的第67天。

首先在图形3-3结合图形3-1可以看出,图形3-1中的第45天与图形2中的第一天(相隔一天)的人数统计是相差比较大的,存在这种情况的原因是在我们在计算第61天,数据值发生了改变,从0.16204到0.0273是一个很大的变化,而在实际的生活中的情况是k值每天都在进行数值在减小的改变,但改变的没有这么大,也正是因为k有了跳跃,N(t)的值才会发生这么大的变化,这是可以理解的。

我们对图形2的整个曲线来与附件1中的图形1进行比较,可以发现,在整个阶段的数值曲线图形都是很接近的。

我们在对全国在前期和后期k分别取k=0.16204和k=0.0273的值来代入所给的模型来计算并画出的图形,与实际的数据和图形进行了比较,是有着很好的吻合,同样我们也可以对k取值一个定值来对全国进行计算和画图,同样也是合理的。

因此我们就认为题目中给我们的那个模型N(t)=n(1+K)是合理的。

通过这个模型我们可以根据某一地区的疫情从爆发到高潮或某一阶段的时间的长短来拟合得到一个与该地区这种疫情的感染率,就可以用该模型来计算或预测该地区现在及以后的病人的累计数,这也就是该模型的实用性所在。

4建立新模型

4.1模型假设

模型假设与指数模型假设一致不在赘述。

4.2模型分析与建立

4.2.1模型分析

初期由于疫情初期政府控制力度不够,大众的对SARS的防范意识不强,造成病情迅速蔓延。

而当政府采取有力措施,人们的防患意识增强,疫情则趋于缓和,病患者人数迅速下降。

所以SARS传播大体上可分为两个阶段:

1)控制前期:

即认为病毒传播方式是自然传播。

2)控制后期:

政府强力介入之后的病毒传播模型。

4.2.2模型建立

根据对指数模型的分析和4.2的分析疫情走势的微分方程如下;

N(t)=K[N(t)–N(t–L)].

(1)

4.3模型的求解

如果假定有一个初始爆发时间,最初有N0个病人突然出现,在L天之内(t<

L)则

N(t-L)=0。

在这个初发期间内,方程

(1)给出的发病人数呈指数增长

N(t)=N(1+K)(0<

t≤L)

(2)

当L<

t≤2L的时候,N(t-L)这部分人就已经没有传播能力了,因此我们推算出了下列模型

N(t)=N[(1+K)–(t-L)K(1+K)](L<

t≤2L)(3)

当2L<

t≤3L的时候又有下列模型

N(t)=N(1+K)–N(t-L)(2L<

t≤3L)(4)

L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等。

在不同的时期L的取值范围也是不一样的,我们所得到的资料中总结出不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。

该参数放在15-25之间比较好,现在医学界还没有确定出L的值,我们想象可能有的人抵抗能力强,有的人抵抗能力差,因此我们把它固定在20(天)上这个值有一定统计上的意义.

我们把L的值定在了20天,是合理的,当t的取值比较大时,该模型又有指数关系,N(t)前后之间的差距比较大,然而当t>

60时,在这之前失去传播能力的只占了少部分,因此规定当t>

60时也可用N(t)=N(1+K)–N(t-L)的模型。

K的值其实是一个变量,它每天的值都在发生变化。

疫情刚开始的时候,K的值大,原因可能有刚可能是政府部门还没有足够重视起来,人们也还没有重视,医疗部门也还没有比较好的设备,医生们对病情也还没有很了解,技术上可能也还有不足。

但随着病情的日益加重,来自各个方面的重视程度都有很大的提高,这是K的值就比较小了。

在此模型中,我们认为感染率(K)在数值上与病例的增长率是相等的,疫情患者他传播在传播给健康人的时候,健康人他可能是带病毒了,但健康热处于潜伏期状态,据“全国“非典”科技攻关组公布七大科研进展”与于2003-06-03日报道中指出潜伏期患者传染的可能很小。

有关部门对非典暴发过程中两例传播链进行了细致的调查和分析,这两个案例中共追查到潜伏期密切接触者158人,无一人死亡。

因此我们在模型中说的感染率只为疫情患者传染给他人,而且他人发病,若他人不发病则不为感染率。

增长率在数值上即为感染率。

我们对全国所提供的所有数据中的已确诊病例累计进行了分析计算,得出感染率K的变化数据并画出了曲线图。

如图4-1所示:

图4-1

K(感染率)是一条跟t的值有关的曲线,我们通过回归法K的公式为:

K=7E-13t-4E-10t+8E-08t-1E-05t+0.0006t-0.0191t+

0.2325(5)

图4-1中R=0.6988为曲线回归的均方差,可见存在的误差并不大。

t为疫情流行的天数。

4.4模型检验

通过该公式可预测疫情开始时或以后的累计病人总数。

例如要预测某一天病人的累计总数,将时间t的天数代入方程(5)即可求得K(感染率)的大小,因为L的值定在20天,所以当0<

t≤20时,将K代入

(2);

当20<

t≤40时,将K代入(3);

当40<

t≤60时,将K代入(4)。

当t=10时,我们根据方程(5),可求得K=0.0923,我们再将K=0.0923代入

(2)得到N=8。

 

当t=50时,我们根据方程(5),可求得K=0.0614,我们再将K=0.0614代入

(2)得到N=308。

这与实际给出的数据非常接近。

可以说明我们的模型是一个比较能够预测以及能为预防和控制提供信息的模型。

4.5模型的应用与推广

此模型可以作为预测以及能为预防和控制提供可靠、足够的信息的模型。

4.6与指数模型的比较

1)我们对不同阶段的疫情的计算和预测建立了不同的模型,这样来分析比附件1所提供的早期模型更加的精确。

2)对感染率K求出了方程,可以知道每一天的疫情感染率,可以更加有效的计算与预测有关数据。

3)该模型实用性更强,能更加准确的反映实情。

5建立模型的关键和困难

建立模型的关键在于对模型进行动态的分析,当传染病发展到一定阶段在政府的控传染率下降。

此时还用之前的误差会很大。

在建立模型过程中有以下几个方面的困难:

1)对不同地区SARS的卫生知识的宣传的多少的不同,K的值就不一样;

2)对某一地区的不同地方的强化管理也不一样(如公交、商场、餐厅、娱乐场所等),K的值也就不一样;

3)还有保护工具的使用、建筑物的通风条件、居住的卫生条件等等的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机硬件及网络

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1