基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx

上传人:b****9 文档编号:12999352 上传时间:2022-10-02 格式:DOCX 页数:80 大小:901.38KB
下载 相关 举报
基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx_第1页
第1页 / 共80页
基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx_第2页
第2页 / 共80页
基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx_第3页
第3页 / 共80页
基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx_第4页
第4页 / 共80页
基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx_第5页
第5页 / 共80页
点击查看更多>>
下载资源
资源描述

基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx

《基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx》由会员分享,可在线阅读,更多相关《基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx(80页珍藏版)》请在冰豆网上搜索。

基于小波包分解的能量特征法、基于希尔伯特—黄变换的边际谱特征法、基于双谱估计的双谱特征法硕士学位论文1Word下载.docx

结果表明,小波能量特征法、三次改进的边际谱特征法和双谱特征法均能将

三种实际光纤扰动信号准确识别。

小波方法和双谱估计方法能满足准确性和时效

性,其中双谱估计的时效性稍差,但在准确性方面更优。

与支持向量机结合的方法相比,双谱特征提取法与神经网络分类器设计法结

I

ABSTRACT

合表现出更好的实用性能,对测试样本识别率高达100%。

关键词:

模式识别;

特征提取;

小波包分解;

希尔伯特­

黄变换;

双谱估计;

神经网络;

支持向量机

II

All­

opticalsecuritysystemisadistributedfiber­

opticdisturbancelocationandsensordefensesystem,abletoobtainthemeasuredchangesinspaceandtimeintheregion.Thepaperdoseresearchonpatternrecognitionoffibersecurity­

monitoringsystem.

Firstly, wavelet denoising method and Spectral subtraction method are

introduced.Applicableenvironmentfortwomethodsaregiventhroughexperiments;

Second,

the

energy

characteristic

method

based

on wavelet

packet

decomposition(WPD),marginalspectrumcharacteristicmethodbasedonHilbert­

Huangtransform(ofHHT),methodbasedonbispectrumestimationandanewmethodtoimprovesignaleigenvectorsareproposed.Thenthepaperintroducesneuralnetworksandsupportvectormachine;Atlastthispaperpresentsthewholepatternrecognitionincombinationwithactualapplication.

Infeatureextractionpart,thispaperpresentsamethodtoextract32­

DfeaturevectorusingWPD,amethodtoconstructa51­

DmarginalspectralcharacteristicsbyHHT,amethodtogeta128­

Dspectrumcharacteristicsusingbispectrumestimation.

Inthedesignpartoftheclassifierpart,thispaperintroducesneuralnetworktheoryandsupportvectormachinetheory,proposesanewmethodcombiningneuralnetworkandsupportvectormachinestrategy.

Theresultsshowthatthewaveletenergyfeaturemethod,threeimprovedmarginalspectrumcharacteristicmethodandthebispectrumcharacteristicsmethodcanrecognizethreedifferentfiberdisturbancesignalsaccurately.Thewaveletmethodandbispectrummethodcanbereal­

time,accurate,highly­

effective.Forbispectrumestimationmethodspendsmoretimeandpresentsbetteraccuracy.

Comparewithsupportvectormachinemethod,neuralnetworkclassifierisbetterforcombiningbispectrumfeatureextraction.Therecognitionrateis100%forthetest

samples.

Key

words:

pattern recognition; feature extraction; wavelet package

decomposition;

hilbert­

huang

translation;

bispectrum

estimation;

neural

network;supportvectormachine

目录

............................................................ 

ABSTRACT 

 

II 

.......................................................... 

III 

第1章

绪论  

1.1. 

模式识别  

1.1.1. 

模式识别的基本概念  

1.1.2. 

模式识别系统  

1.2. 

光纤传感器及全光纤安防系统  

1.2.1. 

光纤传感器  

1.2.2. 

全光纤安防系统  

1.3. 

模式识别方法的发展现状  

1.3.1. 

信号去噪方法  

1.3.2. 

时频分析特征提取  

1.3.3. 

分类器设计  

1.4. 

全文工作介绍  

1.4.1. 

全文工作的安排  

1.4.2. 

全文工作的意义  

第2章

信号去噪  

2.1. 

傅立叶变换与小波变换  

2.1.1. 

傅立叶变换  

2.1.2. 

小波变换  

2.2. 

谱相减去噪  

2.2.1. 

谱相减去噪法  

2.2.2. 

改进后的谱相减去噪法  

10 

2.3. 

小波去噪  

11 

2.3.1. 

小波基  

2.3.2. 

模极大值去噪法  

12 

III

东南大学硕士学位论文

2.3.3. 

小波阈值去噪法  

13 

2.4. 

谱相减去噪与小波能量阈值去噪的比较  

16 

2.4.1. 

基于不同小波基的仿真实验  

2.4.2. 

对于不同信噪比信号的仿真实验  

18 

2.4.3. 

实验小结  

20 

2.5. 

本章小结  

第3章

信号特征提取与选择  

21 

3.1 

小波包分解  

3.1.1 

小波包分解定义  

3.1.2 

小波包的空间分解  

22 

3.1.3 

小波包分析能量特征提取  

3.1.4 

仿真实验  

23 

3.2 

希尔伯特-黄变换  

27 

3.2.1 

希尔伯特-黄变换概述  

28 

3.2.2 

希尔伯特-黄变换特征提取  

30 

3.2.3 

31 

3.2.4 

希尔伯特-黄变换应用  

33 

3.3 

双谱估计  

34 

3.3.1 

双谱的定义  

35 

3.3.2 

双谱特征提取  

3.3.3 

36 

3.4 

一种改进特征向量的方法  

37 

3.4.1 

样品与样品之间的距离  

3.4.2 

类与类之间的距离  

38 

3.4.3 

一种扩大类间距离的方法  

3.5 

实验结果与讨论  

39 

3.6 

本章小结  

40 

第4章

41 

4.1神经网络  

4.1.1 

BP神经网络和RBF神经网络  

42 

IV

4.1.2 

小波神经网络  

43 

4.1.3 

三种神经网络比较  

44 

4.2 

支持向量机  

45 

4.2.1 

一对一(OAO)  

46 

4.2.2 

一对多(OAA)  

4.2.3 

有向无环图(DAG)  

4.2.4 

非平衡二叉树(NBBT)  

47 

4.3 

神经网络与支持向量机  

48 

4.3.1 

神经网络与支持向量机策略的结合  

4.3.2 

实验结果与讨论  

49 

4.4本章小结  

50 

第5章

实验结果与分析  

51 

5.1 

实验信号  

5.2 

小波包能量特征法  

5.3 

希尔伯特—黄变换特征法  

52 

5.3.1 

改进的边际谱特征  

53 

5.4 

双谱估计法  

55 

5.5 

57 

第6章

总结与展望  

58 

致谢

........................................................... 

59 

参考文献 

61 

硕士期间参与的科研项目  

65 

V

第一章绪论

第1章

绪论

本章主要介绍模式识别概念、全光纤安防系统的基本原理、模式识别实际应

用及其研究方法的国内外发展现状以及前人在光纤信号模式识别方面的工作基

础,最后介绍全

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1