四年级数学下册 四则运算教材教法 人教新课标版.docx
《四年级数学下册 四则运算教材教法 人教新课标版.docx》由会员分享,可在线阅读,更多相关《四年级数学下册 四则运算教材教法 人教新课标版.docx(14页珍藏版)》请在冰豆网上搜索。
四年级数学下册四则运算教材教法人教新课标版
2019-2020年四年级数学下册四则运算教材教法人教新课标版
例4
编写意图
(1)例4通过解决实际问题,来总结含有小括号的混合运算的运算顺序。
(2)例4是既可以用三步计算解决,也可以用两步计算解决的实际问题。
它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题的全貌,含有三条数学信息:
上午有游人180位,下午有270位,每30位游人派一位保洁员。
问题是:
下午比上午多派几位保洁员?
教材在学生分析思考的基础上呈现了两个学生不同的解题方法:
第一种方法是先求上午要派几位保洁员,再求下午要派几位保洁员,最后求下午比上午多派几位保洁员;第二种方法是先求下午游人比上午多多少位?
再求下午比上午多派几位保洁员。
在分步解决的基础上,再将上面的两种解法分别列成一个算式,并进行计算,最后得出含有括号的算式的运算顺序:
先算括号里的。
教学建议
教学时,应注意以下几点:
(1)引导学生认真解读题意。
解读“每30位游人需要派一位保洁员”时,需要明白两点:
一是游人数与保洁员人数之间的关系,游人越多,派出的保洁员越多;二是上午与下午派保洁员的标准一样,都是按每30位游人派一位保洁员。
为帮助学生更好地理解这句话,教师可以问:
60位游人要派几位保洁员?
90位游人呢?
有多少游人要派5位保洁员呢?
学生回答后要让学生说出自己是怎么想的?
根据什么?
通过以上的解读活动,为学生分析数量关系,寻找解题思路做好铺垫。
(2)让学生尝试分析数量关系时,教师要引导学生按照:
要求下午比上午多派几位保洁员,先要求什么?
再要求什么?
……的思路去独立思考,并尝试解答,教师要巡视是否出现不同的解法。
(3)注重交流解题思路。
当学生尝试解答后,要组织学生在全班交流不同的思考方法,如果学生想不出第二种方法,教师要给予适当启发,下午游人比上午多多少位?
每多派一位保洁员,就得多多少位游人?
怎样求出下午比上午多派几位保洁员?
逐步引导学生列出算式,计算时,要使学生明白为什么先算括号里的,体会小括号的作用。
(4)要重视两种不同解决的方法和对比。
教学时引导学生从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两布计算解决。
(5)例4后的“做一做”是一道图文结合的实际问题。
由于贴近生活,学生会用两种方法解决,100-54-6,100-(54+6),要让学生说思路和方法,为什么要使用小括号。
例5
编写意图
(1)例1一例4都是以主题图“冰天雪地”为题材编排的实际问题。
学生经历了解决实际问题的过程,不仅逐步掌握了解决实际问题的策略和方法,而且理解了四则混合运算顺序的必要性,掌握了四则运算的运算顺序。
例5就是在以上基础上安排的。
(2)例5引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。
教材首先让学生独立计算例5中的两小题,探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。
在此基础上,教材让学生结合具体式题,总结四则混合运算的顺序。
教学建议
(1)由于学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,可以采用自主探究和小组合作相结合的学习方式开展学习活动。
例5中的两小题出示后可分三步进行:
第一步,让学生在书上的算式里标出运算顺序号,如:
同桌互评后独立计算,把计算过程填写在书上,然后互相核对结果。
第二步,分小组讨论,再派代表在全班交流。
讨论交流的问题是:
例5中的两小题有什么相同的地方?
有什么不同的地方?
两题的计算结果为什么不一样?
第三步,引导学生用术语和、差、积、商来表述运算过程,如例5中的第
(1)题可以这样说,首先求差,然后求积,最后求和。
在学生明确了加法、减法、乘法和除法统称四则运算后,再以小组合作的形式总结四则运算的运算顺序,在整理的基础上教师可以做如下板书:
(2)例5后面的“做一做”,第1题先让学生用术语和、差、积、商说说运算顺序,然后计算。
其中,第
(2)小题学生练习后,教师可指出:
算式里含有两个小括号的,可以同时脱式。
第2题要求学生列综合算式解答。
例6
编写意图
(1)在第一学段,学生刚开始学习加减法,就认识了0。
掌握了有关0的加、减法计算,明白了这些加减法的含义,随着知识的不断扩展,在学习乘,除法时,又认识了0在乘除运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了。
在四则运算中的特性,体会到0在四则运算中的地位和作用。
为了把分散学习的有关。
的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力,教材编排了例6。
(2)例6首先提出:
“想一想,你知道哪些有关。
的运算。
应该注意些什么?
”接着又以一幅小组合作学习的画面,生动地展示了同学们讨论交流的情境,对。
在四则运算中的特性作了比较系统精练的总结。
这样安排的问题和学习形式,能充分调动学生的积极性。
(3)教材通过“注意”,特别说明0不能作除数及0为什么不能作除数的道理。
o为什么不能作除数这部分知识很重要,也很难理解,以后学习分数、比等知识要用到。
为了帮助学生突破难点,教材中联系除法的意义举例作了说明:
先举5÷0,说明不可能找到商,再举0÷0,说明不可能得到一个确定的商。
教学建议
教学时,应注意以下几点:
(1)要给学生留有充分的时间,让他们回忆、整理和概括有关。
在四则运算中的特性。
教学时,可以采用小组合作形式,大家在组内畅所欲言,并派一人记录,然后在全班交流。
教师根据学生交流的内容,有针对性分加、减、乘、除法板书出实例,再引导学生分类概括出结语。
学生总结出的话可能没有书上那样精练,但只要意思相似,教师都应鼓励,并让学生看看书上的小朋友是怎样说的。
如果学生以结语的形式表达有关。
的运算,可让他再举例说明。
总之,教学时教师只能适当引导,让学生充分发表意见和看法,不要包办代替。
(2)0为什么不能作除数是个难点,教学时要引导学生通过举例来说明,比如让学生举出除数是。
的除法的例子,5÷0=口0÷0=口,问:
如果用。
作除数结果会怎样?
引导学生分两种情况分析:
①5÷0=口表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?
因为一个数和。
相乘仍得0,所以5÷0不可能得到商。
②0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想。
和几相乘得0,然后问:
能找到这样的数吗?
能,因为。
和任何数相乘都得o,这时指出o÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。
(3)例6后面安排了一个数学游戏,明确题意后分小组活动,把和为340的算式记下来,便于交流和评价。
附送:
2019-2020年四年级数学下册四则运算教案人教新课标版
教学内容:
P4/例1、例2(只含有同一级运算的混合运算)
教学目标:
1.使学生进一步掌握含有同一级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?
“冰雪天地”分成几个活动区?
每个区有多少人?
你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。
现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。
照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
1.小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2.小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
3.全班汇报:
组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+85
=27+85
=113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×66÷3×987
=329×6=2×987
=1974(人)=1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。
(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。
)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。
就可以直接用3天的987人数去乘算出来的2倍。
等等。
引导学生进一步理解“照这样计算”的意思。
强调:
可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
(1)根据老师提供的情景编题。
A加减混合。
乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)P5/做一做1、2
三、小结
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。
(尤其是关于运算顺序的)
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业
P8/1—4
板书设计:
四则运算
(一)
1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。
照这
又有85人到来。
现在有多少人在滑冰?
样计算,6天预计接待多少人?
72-44+85
(1)987÷3×6
(2)6÷3×987
=27+85=329×6=2×987
=113(人)=1974(人)=1974(人)
运算顺序:
在没有括号的算式里,如果只有加、减法
或者只有乘、除法,都要从左往右按顺序计算。
课后小结:
第二课时:
教学内容:
P6/例3P10/例4(含有两级运算或有括号的混合运算)
教学目标:
1.使学生进一步掌握含有两级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。
从图中你们都看到了什么?
能提出什么数学问题?
二、新授
就学生提出的问题,出示例3星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:
教师根据学生的汇报进行板书。
(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。
两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4上午冰雕区有游人180位,下午有270位。
如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P7/做一做1、2
P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。
)
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
P8—9/5—9
板书设计:
四则运算
(二)
星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱?
如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2
(2)24×2+24÷2比上午多派几名保洁员?
=24+24+12=48+12
(1)270÷30-180÷30
(2)(270-180)÷30
=48+12=60(元)=9-6=90÷30
=60(元)=3(名)=3(名)
运算顺序:
在没有括号的算式里,有乘、运算顺序:
算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。
面的。
课后小结:
第三课时:
教学内容:
P11/例5(强化小括号的作用)、归纳运算顺序
教学目标;
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?
谁能说说你在前面都学会了哪些四则运算顺序?
根据学生的回答进行板书。
二、新授
出示例5
(1)42+6×(12-4)
(2)42+6×12-4
学生在练习本上独立解答。
(画出顺序线)
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:
加法、减法、乘法和除法统称四则运算。
(板书)
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习
P12/做一做1、2
P14/4
教师巡视纠正。
四、作业
P14—15/2、3、5—7
板书设计:
四则运算(三)
(1)42+6×(12-4)
(2)42+6×12-4运算顺序:
=42+6×8=42+72-4
(1)在没有括号的算式里,如果
=42+48=114-4只有加、减法或者只有乘、除法,都
=90=110要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、
除法和加、减法,要先算乘、除法。
(3)算式里有括号的,要先算括
号里面的。
加法、减法、乘法和除法统称四则运算。
课后小结:
第四课时:
教学内容:
P13/例6(0的运算)
教学目的:
使学生掌握关于0的运算应该注意的问题。
教学重、难点:
0不能做除数及原因。
教学过程:
一、口算引入
快速口算
出示:
(1)100+0=
(2)0+568=
(3)0×78=
(4)154-0=
(5)0÷23=
(6)128-128=
(7)0÷76=
(8)235+0=
(9)99-0=
(10)49-49=
(11)0+319=
(12)0×29=
二、新授
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:
0能否做除数?
全班辩论。
各自讲明自己的理由。
教师小结:
0不能做除数。
如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结
学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业
P15—16/8—13
板书设计:
关于“0”的运算
100+0=100235+0=235一个数加上0,还得原数。
0能否做除数?
0+319=3190+568=5680不能做除数。
99-0=99154-0=154一个数减去0,还得这个数。
0×29=00×78=0一个数乘0或0乘一个数,还得0。
0÷76=00÷23=00除以一个非0的数,,还得0。
49-49=0128-128=0被减数等于减数,差是0。
课后小结: