四年级数学下册 四则运算教材教法 人教新课标版.docx

上传人:b****3 文档编号:12684545 上传时间:2023-04-21 格式:DOCX 页数:14 大小:21.67KB
下载 相关 举报
四年级数学下册 四则运算教材教法 人教新课标版.docx_第1页
第1页 / 共14页
四年级数学下册 四则运算教材教法 人教新课标版.docx_第2页
第2页 / 共14页
四年级数学下册 四则运算教材教法 人教新课标版.docx_第3页
第3页 / 共14页
四年级数学下册 四则运算教材教法 人教新课标版.docx_第4页
第4页 / 共14页
四年级数学下册 四则运算教材教法 人教新课标版.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

四年级数学下册 四则运算教材教法 人教新课标版.docx

《四年级数学下册 四则运算教材教法 人教新课标版.docx》由会员分享,可在线阅读,更多相关《四年级数学下册 四则运算教材教法 人教新课标版.docx(14页珍藏版)》请在冰豆网上搜索。

四年级数学下册 四则运算教材教法 人教新课标版.docx

四年级数学下册四则运算教材教法人教新课标版

2019-2020年四年级数学下册四则运算教材教法人教新课标版

例4

编写意图

(1)例4通过解决实际问题,来总结含有小括号的混合运算的运算顺序。

(2)例4是既可以用三步计算解决,也可以用两步计算解决的实际问题。

它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题的全貌,含有三条数学信息:

上午有游人180位,下午有270位,每30位游人派一位保洁员。

问题是:

下午比上午多派几位保洁员?

教材在学生分析思考的基础上呈现了两个学生不同的解题方法:

第一种方法是先求上午要派几位保洁员,再求下午要派几位保洁员,最后求下午比上午多派几位保洁员;第二种方法是先求下午游人比上午多多少位?

再求下午比上午多派几位保洁员。

在分步解决的基础上,再将上面的两种解法分别列成一个算式,并进行计算,最后得出含有括号的算式的运算顺序:

先算括号里的。

教学建议

教学时,应注意以下几点:

(1)引导学生认真解读题意。

解读“每30位游人需要派一位保洁员”时,需要明白两点:

一是游人数与保洁员人数之间的关系,游人越多,派出的保洁员越多;二是上午与下午派保洁员的标准一样,都是按每30位游人派一位保洁员。

为帮助学生更好地理解这句话,教师可以问:

60位游人要派几位保洁员?

90位游人呢?

有多少游人要派5位保洁员呢?

学生回答后要让学生说出自己是怎么想的?

根据什么?

通过以上的解读活动,为学生分析数量关系,寻找解题思路做好铺垫。

(2)让学生尝试分析数量关系时,教师要引导学生按照:

要求下午比上午多派几位保洁员,先要求什么?

再要求什么?

……的思路去独立思考,并尝试解答,教师要巡视是否出现不同的解法。

(3)注重交流解题思路。

当学生尝试解答后,要组织学生在全班交流不同的思考方法,如果学生想不出第二种方法,教师要给予适当启发,下午游人比上午多多少位?

每多派一位保洁员,就得多多少位游人?

怎样求出下午比上午多派几位保洁员?

逐步引导学生列出算式,计算时,要使学生明白为什么先算括号里的,体会小括号的作用。

(4)要重视两种不同解决的方法和对比。

教学时引导学生从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两布计算解决。

(5)例4后的“做一做”是一道图文结合的实际问题。

由于贴近生活,学生会用两种方法解决,100-54-6,100-(54+6),要让学生说思路和方法,为什么要使用小括号。

例5

编写意图

(1)例1一例4都是以主题图“冰天雪地”为题材编排的实际问题。

学生经历了解决实际问题的过程,不仅逐步掌握了解决实际问题的策略和方法,而且理解了四则混合运算顺序的必要性,掌握了四则运算的运算顺序。

例5就是在以上基础上安排的。

(2)例5引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。

教材首先让学生独立计算例5中的两小题,探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。

在此基础上,教材让学生结合具体式题,总结四则混合运算的顺序。

教学建议

(1)由于学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,可以采用自主探究和小组合作相结合的学习方式开展学习活动。

例5中的两小题出示后可分三步进行:

第一步,让学生在书上的算式里标出运算顺序号,如:

同桌互评后独立计算,把计算过程填写在书上,然后互相核对结果。

第二步,分小组讨论,再派代表在全班交流。

讨论交流的问题是:

例5中的两小题有什么相同的地方?

有什么不同的地方?

两题的计算结果为什么不一样?

第三步,引导学生用术语和、差、积、商来表述运算过程,如例5中的第

(1)题可以这样说,首先求差,然后求积,最后求和。

在学生明确了加法、减法、乘法和除法统称四则运算后,再以小组合作的形式总结四则运算的运算顺序,在整理的基础上教师可以做如下板书:

(2)例5后面的“做一做”,第1题先让学生用术语和、差、积、商说说运算顺序,然后计算。

其中,第

(2)小题学生练习后,教师可指出:

算式里含有两个小括号的,可以同时脱式。

第2题要求学生列综合算式解答。

例6

编写意图

(1)在第一学段,学生刚开始学习加减法,就认识了0。

掌握了有关0的加、减法计算,明白了这些加减法的含义,随着知识的不断扩展,在学习乘,除法时,又认识了0在乘除运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了。

在四则运算中的特性,体会到0在四则运算中的地位和作用。

为了把分散学习的有关。

的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力,教材编排了例6。

(2)例6首先提出:

“想一想,你知道哪些有关。

的运算。

应该注意些什么?

”接着又以一幅小组合作学习的画面,生动地展示了同学们讨论交流的情境,对。

在四则运算中的特性作了比较系统精练的总结。

这样安排的问题和学习形式,能充分调动学生的积极性。

(3)教材通过“注意”,特别说明0不能作除数及0为什么不能作除数的道理。

o为什么不能作除数这部分知识很重要,也很难理解,以后学习分数、比等知识要用到。

为了帮助学生突破难点,教材中联系除法的意义举例作了说明:

先举5÷0,说明不可能找到商,再举0÷0,说明不可能得到一个确定的商。

教学建议

教学时,应注意以下几点:

(1)要给学生留有充分的时间,让他们回忆、整理和概括有关。

在四则运算中的特性。

教学时,可以采用小组合作形式,大家在组内畅所欲言,并派一人记录,然后在全班交流。

教师根据学生交流的内容,有针对性分加、减、乘、除法板书出实例,再引导学生分类概括出结语。

学生总结出的话可能没有书上那样精练,但只要意思相似,教师都应鼓励,并让学生看看书上的小朋友是怎样说的。

如果学生以结语的形式表达有关。

的运算,可让他再举例说明。

总之,教学时教师只能适当引导,让学生充分发表意见和看法,不要包办代替。

(2)0为什么不能作除数是个难点,教学时要引导学生通过举例来说明,比如让学生举出除数是。

的除法的例子,5÷0=口0÷0=口,问:

如果用。

作除数结果会怎样?

引导学生分两种情况分析:

①5÷0=口表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?

因为一个数和。

相乘仍得0,所以5÷0不可能得到商。

②0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想。

和几相乘得0,然后问:

能找到这样的数吗?

能,因为。

和任何数相乘都得o,这时指出o÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。

(3)例6后面安排了一个数学游戏,明确题意后分小组活动,把和为340的算式记下来,便于交流和评价。

附送:

2019-2020年四年级数学下册四则运算教案人教新课标版

教学内容:

P4/例1、例2(只含有同一级运算的混合运算)

教学目标:

1.使学生进一步掌握含有同一级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题。

(1)说一说图中的人们在干什么?

“冰雪天地”分成几个活动区?

每个区有多少人?

你是怎么知道的?

组织学生提问并对简单地问题直接解答。

(2)根据图中提出的信息,你能提出哪些问题,怎样解决?

通过补充条件,继续提问。

1.滑冰场上午有72人,中午有44人离去,又有85人到来。

现在有多少人在滑冰?

2.“冰雪天地”3天接待987人。

照这样计算,6天预计接待多少人?

等等。

先小组交流,再全班交流。

提示学生可以自己进行条件的补充。

二、新授

1.小组4人对黑板上的题目进行分配解答。

引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。

2.小组内互相说说你是怎样解答的?

教师巡视并对学生的叙述进行指导。

3.全班汇报:

组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

(1)71-44+85

=27+85

=113(人)

71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。

(2)987÷3×66÷3×987

=329×6=2×987

=1974(人)=1974(人)

第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。

(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。

第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。

就可以直接用3天的987人数去乘算出来的2倍。

等等。

引导学生进一步理解“照这样计算”的意思。

强调:

可用线段图帮助理解。

教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

4.巩固练习

(1)根据老师提供的情景编题。

A加减混合。

乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率

先个人编题,再两人交换。

小组合作,减少重复练习。

(2)P5/做一做1、2

三、小结

学生就本节课的学习内容进行汇报。

这节课我们解决了很多问题,你们都有什么收获?

教师根据学生的回报选择性地板书。

(尤其是关于运算顺序的)

运算顺序为已有知识基础,让学生进行回忆概括。

四、作业

P8/1—4

板书设计:

四则运算

(一)

1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。

照这

又有85人到来。

现在有多少人在滑冰?

样计算,6天预计接待多少人?

72-44+85

(1)987÷3×6

(2)6÷3×987

=27+85=329×6=2×987

=113(人)=1974(人)=1974(人)

运算顺序:

在没有括号的算式里,如果只有加、减法

或者只有乘、除法,都要从左往右按顺序计算。

课后小结:

 

第二课时:

教学内容:

P6/例3P10/例4(含有两级运算或有括号的混合运算)

教学目标:

1.使学生进一步掌握含有两级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,

学会用两步计算的方法解决一些实际问题。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图引入

观察主题图,找出条件,提出问题。

引导学生观察主题图。

从图中你们都看到了什么?

能提出什么数学问题?

二、新授

就学生提出的问题,出示例3星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?

学生在练习本上解答此问题。

同桌两人说说自己是怎样解答的。

汇报:

教师根据学生的汇报进行板书。

(1)24+24+24÷2

=24+24+12

=48+12

=60(元)

24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。

两张成人票加上一张儿童票就是他们购买门票需要多少钱。

(2)24×2+24÷2

=48+12

=60(元)

24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。

我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?

这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。

这样的综合算式的运算顺序是什么?

学生总结运算顺序。

 

买3张成人票,付100元,应找回多少钱?

等等。

出示例4上午冰雕区有游人180位,下午有270位。

如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?

小组讨论,独立完成。

小组内互相说说你是怎样解答的?

汇报。

(1)270÷30-180÷30

=9-6

=3(名)

270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。

(2)(270-180)÷30

=90÷30

=3(名)

270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。

引导学生观察两个算是的不同点,以及运算顺序的不同。

学生进行小结。

教师根据学生的小结进行板书。

三、巩固练习

P7/做一做1、2

P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。

教师在练习的过程中应抓住学生的关键语言进行知识的巩固。

四、作业

P8—9/5—9

板书设计:

四则运算

(二)

星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。

天地”游玩,购买门票需要花多少钱?

如果每30位游人需要一名保洁员,下午要

(1)24+24+24÷2

(2)24×2+24÷2比上午多派几名保洁员?

=24+24+12=48+12

(1)270÷30-180÷30

(2)(270-180)÷30

=48+12=60(元)=9-6=90÷30

=60(元)=3(名)=3(名)

运算顺序:

在没有括号的算式里,有乘、运算顺序:

算式里有括号,要先算括号里

除法和加、减法,要先算乘、除法。

面的。

课后小结:

第三课时:

教学内容:

P11/例5(强化小括号的作用)、归纳运算顺序

教学目标;

1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。

2.在学生的头脑中强化小括号的作用。

3.在练习中总结归纳出四则混合运算的顺序。

教学过程:

一、复习引入

回忆前两节课的学习内容,回顾学习过的四则运算顺序。

前面我们学习了几种不同的四则运算,你们还记得吗?

谁能说说你在前面都学会了哪些四则运算顺序?

根据学生的回答进行板书。

二、新授

出示例5

(1)42+6×(12-4)

(2)42+6×12-4

学生在练习本上独立解答。

(画出顺序线)

两名学生板演。

全班学生进行检验。

上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?

这几天我们一直都在说“四则运算”,到底什么是四则运算呢?

学生针对问题发表自己的意见。

概括:

加法、减法、乘法和除法统称四则运算。

(板书)

谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?

学生自由回答。

三、巩固练习

P12/做一做1、2

P14/4

教师巡视纠正。

四、作业

P14—15/2、3、5—7

板书设计:

四则运算(三)

(1)42+6×(12-4)

(2)42+6×12-4运算顺序:

=42+6×8=42+72-4

(1)在没有括号的算式里,如果

=42+48=114-4只有加、减法或者只有乘、除法,都

=90=110要从左往右按顺序计算。

(2)在没有括号的算式里,有乘、

除法和加、减法,要先算乘、除法。

(3)算式里有括号的,要先算括

号里面的。

加法、减法、乘法和除法统称四则运算。

课后小结:

 

第四课时:

教学内容:

P13/例6(0的运算)

教学目的:

使学生掌握关于0的运算应该注意的问题。

教学重、难点:

0不能做除数及原因。

教学过程:

一、口算引入

快速口算

出示:

(1)100+0=

(2)0+568=

(3)0×78=

(4)154-0=

(5)0÷23=

(6)128-128=

(7)0÷76=

(8)235+0=

(9)99-0=

(10)49-49=

(11)0+319=

(12)0×29=

二、新授

将上面的口算进行分类

请你们根据分类的结果说一说关于0的运算都有哪些。

学生分类后进行概括总结关于0的运算。

教师根据学生的回答进行板书。

关于0的运算你还有什么想问的或想说的吗?

学生提出0是否可以做除数。

小组讨论:

0能否做除数?

全班辩论。

各自讲明自己的理由。

教师小结:

0不能做除数。

如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。

 

三、小结

学生小结关于0的运算应该注意的问题。

教师引导学生小结。

 

四、作业

P15—16/8—13

 

板书设计:

关于“0”的运算

100+0=100235+0=235一个数加上0,还得原数。

0能否做除数?

0+319=3190+568=5680不能做除数。

99-0=99154-0=154一个数减去0,还得这个数。

0×29=00×78=0一个数乘0或0乘一个数,还得0。

0÷76=00÷23=00除以一个非0的数,,还得0。

49-49=0128-128=0被减数等于减数,差是0。

课后小结:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1