网络分析仪校准步骤.docx
《网络分析仪校准步骤.docx》由会员分享,可在线阅读,更多相关《网络分析仪校准步骤.docx(27页珍藏版)》请在冰豆网上搜索。
网络分析仪校准步骤
RF天线调试步骤
使用仪器:
1.网络分析仪一台
电路连接:
1.仪器校准后,把铜轴头焊在PCBF上,然后通过铜轴头与仪器连接。
校准仪器:
1.先按“Appl”按钮,再按“Cal”按钮。
2.选择屏幕上的“PERFORMCAL2-PORTCAL”。
3.屏幕上显示
“CALMETHODSTANDARD”
“LINETYPECOAXIAL”。
选择“NEXTCALSTEP”
4.屏幕上显示“FULL12-TERM”,选择“PATH”。
5.选择“FORWARDCPATH(S11,S21)”。
6.选择“INCLUDEISOLATION(STANDARD)”。
7.选择“NORMAL(1601POINTSMAXIMUM)”。
8.屏幕显示
“START…GHZ”------设定显示的开始值
“STOP…GHZ”。
------设定显示的结束值
选择“NEXTCALSTEP”
9.选择“PORT1CONN”,进入下一页面,选择“TYPEN(F)”,按“NEXTCALSTEP”返回上一页面。
10.选择“LOADTYPEBROADBAND”,进入下一页面,选择“BROADBANDFIXEDLOAD”,设置“IMPEDANCE”为50.000Ω,按“NEXTCALSTEP”返回上一页面。
11.选择“THROUGHLINEPARAMETERS”,进入下一页面,设置“OFFSETLENGTH”为0.0000mm,设置“THROUGHLINEIMPEDANCE”为50.000Ω,按“NEXTCALSTEP”返回上一页面。
12.选择“REFERENCEIMPEDANCE”,进入下一页面,设置“REFERENCEIMPEDANCE”为50.000Ω,按“NEXTCALSTEP”返回上一页面。
13.选择“STARTCAL”。
14.选择“MEASUREBOTHPORTS”---此步无用。
15.选择“NEXTCALSTEP”。
16.连接上“50Ω”校准码,按“MEASUREDEVICE(S)”。
17.选择“NEXTCALSTEP”。
18.连接上“OPEN”校准码,按“MEASUREDEVICE(S)”。
19.选择“NEXTCALSTEP”。
20.连接上“SHORT”校准码,按“MEASUREDEVICE(S)”。
21.选择“NEXTCALSTEP”。
22.选择“MEASUREDEVICE(S)”---此步无用。
23.选择“NEXTCALSTEP”。
24.屏幕显示“PRESSTOPROCEED”,按“ENTER”按钮。
25.按“DISPLAY”按钮,选择屏幕上的“GRAPHTYPE”,再选择“SMITHCHART”。
26.再按“DISPLAY”按钮,选择屏幕上的“REFERENCEPLANE”,进入下一画面,选择“DISTANCE”,连接上空载的RF线,根据RF线的长度设定DISTANCE值(右边小键盘选择数字和单位),使用频点到如图所示位置。
调试:
参考史密斯圆图法:
通过史密斯图,可以让使用者迅速的得出在传输线上任意一点阻抗,电压反射系数,VSWR等数据,简单方便,所以一直被广泛应用于电磁波研究的领域。
史密斯圆图中包括电阻圆(图中红色的,从右半边开始发散的圆)和电导圆(图中绿色的,从左半圆发散开的圆),而那些和电阻电导圆垂直相交的半圆则称为电抗圆,其中,中轴线以上的电抗圆为正电抗圆(表现为感性),而中轴线以下的为负电抗圆(表现为容性)。
沿着圆周顺时针方向是指朝着源端传输线变化,而逆时针方向是朝着负载端变化。
归一化的史密斯图上(直角坐标复平面)的点到圆心之间的距离就是该点的反射系数的大小,所以对于最好的匹配来说,要保证S11参数点在圆心,S21参数点在圆周上。
1. 用史密斯图求VSWR
我们知道,传输线上前向和后向的行波合成会形成驻波,其根本原因在于源端和负载端的阻抗不匹配。
我们可以定义一个称为电压驻波比(voltagestanding-waveratio,VSWR)的量度,来评价负载接在传输线上的不匹配程度。
VSWR定义为传输线上驻波电压最大值与最小值之比:
对于匹配的传输线Vmax=Vmin,VSWR将为1。
VSWR也可以用和接受端反射系数的关系式来表达:
对于完全匹配的传输线,反射系数为0,故而VSWR为1,但对于终端短路或开路,VSWR将为无穷大,因为这两种情况下的反射系数绝对值为1。
在史密斯图上表示:
所以要计算VSWR,只需要在极坐标的史密斯图上以阻抗点到圆心的距离为半径作圆,与水平轴相交,则离极坐标原点最远点坐标的大小即为电压驻波比的大小。
举个例子,假设传输线的阻抗为50Ω,负载的阻抗为50+j100Ω,则负载在史密斯圆上的归一化阻抗的大小为:
1.0+j2.0Ω,按上述方法即可在图中求出VSWR的大小。
2. 用史密斯图求导纳
我们知道,如果将史密斯阻抗圆图旋转180度,就可以得到史密斯导纳圆图,根据这个关系,在阻抗圆图上也可以通过做图求出任一点的导纳。
其步骤就是连接所在点和圆心,并反向延长至等距离,所得点的坐标就是其导纳。
比如,某点阻抗为400-j1600Ω,Z0=1000Ω,则其归一化阻抗为0.4-j1.6,从图中可以得到:
则导纳大小为:
Y=(0.145+j0.59)Y0=0.000145+j0.00059Ω-1。
3. 利用史密斯图进行阻抗匹配
1).使用并联短截线的阻抗匹配
我们可以通过改变短路的短截线的长度与它在传输线上的位置来进行传输网络的匹配,当达到匹配时,连接点的输入阻抗应正好等于线路的特征阻抗。
假设传输线特征阻抗的导纳为Yin,无损耗传输线离负载d处的输入导纳Yd=Yin+(归一化导纳即为1+),输入导纳为Ystub=-的短截线接在M点,以使负载和传输线匹配。
在史密斯图上的操作步骤:
1.做出负载的阻抗点A,反向延长求出其导纳点B;2.将点B沿顺时针方向(朝着源端)转动,与r=1的圆交于点C和D;3.点D所在的电抗圆和圆周交点为F;4.分别读出各点对应的长度,B(aλ),C(bλ),F(kλ);5.可以得出:
负载至短截线连接点的最小距离d=bλ-aλ,短截线的长度S=kλ-0.25λ。
2).使用L-C电路的阻抗匹配
在RF电路设计中,还经常用L-C电路来达到阻抗匹配的目的,通常的可以有如下8种匹配模型可供选择:
这些模型可根据不同的情况合理选择,如果在低通情况下可选择串联电感的形式,而在高通时则要选择串联电容的形式。
使用电容电感器件进行阻抗匹配,在史密斯图上的可以遵循下面四个规则:
● 沿着恒电阻圆顺时针走表示增加串联电感;
● 沿着恒电阻圆逆时针走表示增加串联电容;
● 沿着恒电导圆顺时针走表示增加并联电容;
● 沿着恒电导圆逆时针走表示增加并联电感。
举例说明,负载阻抗为25+j50Ω,传输线的特征阻抗为50Ω,我们可以采取下面途径进行匹配:
我们还可以采用Lp-Cs的匹配形式,同样可以达到消除反射的目的: