Hypothesis Testing Basics.docx

上传人:b****5 文档编号:12542044 上传时间:2023-04-20 格式:DOCX 页数:14 大小:72.50KB
下载 相关 举报
Hypothesis Testing Basics.docx_第1页
第1页 / 共14页
Hypothesis Testing Basics.docx_第2页
第2页 / 共14页
Hypothesis Testing Basics.docx_第3页
第3页 / 共14页
Hypothesis Testing Basics.docx_第4页
第4页 / 共14页
Hypothesis Testing Basics.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

Hypothesis Testing Basics.docx

《Hypothesis Testing Basics.docx》由会员分享,可在线阅读,更多相关《Hypothesis Testing Basics.docx(14页珍藏版)》请在冰豆网上搜索。

Hypothesis Testing Basics.docx

HypothesisTestingBasics

HypothesisTestingBasics

TheNormalDistribution

Althoughtherearenumeroussamplingdistributionsusedinhypothesistesting,thenormaldistributionisthemostcommonexampleofhowdatawouldappearifwecreatedafrequencyhistogramwherethexaxisrepresentsthevaluesofscoresinadistributionandtheyaxisrepresentsthefrequencyofscoresforeachvalue.Mostscoreswillbesimilarandthereforewillgroupnearthecenterofthedistribution.Somescoreswillhaveunusualvaluesandwillbelocatedfarfromthecenterorapexofthedistribution.Theseunusualscoresarerepresentedbelowastheshadedareasofthedistribution.Inhypothesistesting,wemustdecidewhethertheunusualvaluesaresimplydifferentbecauseofrandomsamplingerrorortheyareintheextremetailsofthedistributionbecausetheyaretrulydifferentfromothers.Samplingdistributionshavebeendevelopedthattellusexactlywhattheprobabilityofthissamplingerrorisinarandomsampleobtainedfromapopulationthatisnormallydistributed.

Propertiesofanormaldistribution

∙Formsasymmetricbell-shapedcurve

∙50%ofthescoreslieaboveand50%belowthemidpointofthedistribution

∙Curveisasymptotictothexaxis

∙Mean,median,andmodearelocatedatthemidpointofthexaxis

Usingtheoreticalsamplingprobabilitydistributions

Samplingdistributionsallowustoapproximatetheprobabilitythataparticularvaluewouldoccurbychancealone.Ifyoucollectedmeansfromaninfinitenumberofrepeatedrandomsamplesofthesamesamplesizefromthesamepopulationyouwouldfindthatmostmeanswillbeverysimilarinvalue,inotherwords,theywillgrouparoundthetruepopulationmean.Mostmeanswillcollectaboutacentralvalueormidpointofasamplingdistribution.Thefrequencyofmeanswilldecreaseasonetravelsawayfromthecenterofanormalsamplingdistribution.Inanormalprobabilitydistribution,about95%ofthemeansresultingfromaninfinitenumberofrepeatedrandomsampleswillfallbetween1.96standarderrorsaboveandbelowthemidpointofthedistributionwhichrepresentsthetruepopulationmeanandonly5%willfallbeyond(2.5%ineachtailofthedistribution).

Thefollowingarecommonlyusedpointsonadistributionfordecidingstatisticalsignificance:

90%ofscores+/-1.65standarderrors

95%ofscores+/-1.96standarderrors

99%ofscores+/-2.58standarderrors

Standarderror:

Mathematicaladjustmenttothestandarddeviationtoaccountfortheeffectsamplesizehasontheunderlyingprobabilitydistribution.Itrepresentsthestandarddeviationofthesamplingdistribution

Alphaandtheroleofthedistributiontails

Thepercentageofscoresbeyondaparticularpointalongthexaxisofasamplingdistributionrepresentthepercentofthetimeduringaninfinitenumberofrepeatedsamplesonewouldexpecttohaveascoreatorbeyondthatvalueonthexaxis.Thisvalueonthexaxisisknownasthecriticalvaluewhenusedinhypothesistesting.Themidpointrepresentstheactualpopulationvalue.Mostscoreswillfallneartheactualpopulationvaluebutwillexhibitsomevariationduetosamplingerror.Ifascorefromarandomsamplefalls1.96standarderrorsorfartheraboveorbelowthemeanofthesamplingdistribution,weknowfromtheprobabilitydistributionthatthereisonlya5%chanceofrandomlyselectingasetofscoresthatwouldproduceasamplemeanthatfarfromthetruepopulationmean.Whenconductingsignificancetesting,ifwehaveateststatisticthatis1.96standarderrorsaboveorbelowthemeanofthesamplingdistribution,weassumewehaveastatisticallysignificantdifferencebetweenoursamplemeanandtheexpectedmeanforthepopulation.Sinceweknowavaluethatfarfromthepopulationmeanwillonlyoccurrandomly5%ofthetime,weassumethedifferenceistheresultofatruedifferencebetweenthesampleandthepopulationmean,andisnottheresultofrandomsamplingerror.The5%isalsoknownasalphaandistheprobabilityofbeingwrongwhenweconcludestatisticalsignificance.

1-tailedvs.2-tailedstatisticaltests

A2-tailedtestisusedwhenyoucannotdetermineaprioriwhetheradifferencebetweenpopulationparameterswillbepositiveornegative.A1-tailedtestisusedwhenyoucanreasonablyexpectadifferencewillbepositiveornegative.Ifyouretainthesamecriticalvaluefora1-tailedtestthatwouldbeusedifa2-tailedtestwasemployed,thealphaishalved(i.e.,.05alphawouldbecome.025alpha).

HypothesisTesting

Thechainofreasoningandsystematicstepsusedinhypothesistestingthatareoutlinedinthissectionarethebackboneofeverystatisticaltestregardlessofwhetheronewritesouteachstepinaclassroomsettingorusesstatisticalsoftwaretoconductstatisticaltestsonvariablesstoredinadatabase.

Chainofreasoningforinferentialstatistics

1.Sample(s)mustberandomlyselected

2.Sampleestimateiscomparedtounderlyingdistributionofthesamesizesamplingdistribution

3.Determinetheprobabilitythatasampleestimatereflectsthepopulationparameter

Thefourpossibleoutcomesinhypothesistesting

 

 

 

 

ActualPopulationComparison

NullHyp.True

NullHyp.False

DECISION

(thereisnodifference)

(thereisadifference)

RejectedNullHyp

TypeIerror

(alpha)

CorrectDecision

DidnotRejectNull

CorrectDecision

TypeIIError

(Alpha=probabilityofmakingaTypeIerror)

Regardlessofwhetherstatisticaltestsareconductedbyhandorthroughstatisticalsoftware,thereisanimplicitunderstandingthatsystematicstepsarebeingfollowedtodeterminestatisticalsignificance.Thesegeneralstepsaredescribedonthefollowingpageandinclude1)assumptions,2)statedhypothesis,3)rejectioncriteria,4)computationofstatistics,and5)decisionregardingthenullhypothesis.Theunderlyinglogicisbasedonrejectingastatementofnodifferenceornoassociation,calledthenullhypothesis.Thenullhypothesisisonlyrejectedwhenwehaveevidencebeyondareasonabledoubtthatatruedifferenceorassociationexistsinthepopulation(s)fromwhichwedrewourrandomsample(s).

Reasonabledoubtisbasedonprobabilitysamplingdistributionsandcanvaryattheresearcher'sdiscretion.Alpha.05isacommonbenchmarkforreasonabledoubt.Atalpha.05weknowfromthesamplingdistributionthatateststatisticwillonlyoccurbyrandomchancefivetimesoutof100(5%probability).Sinceateststatisticthatresultsinanalphaof.05couldonlyoccurbyrandomchance5%ofthetime,weassumethattheteststatisticresultedbecausetherearetruedifferencesbetweenthepopulationparameters,notbecausewedrewanextremelybiasedrandomsample.

Whenlearningstatisticswegenerallyconductstatisticaltestsbyhand.Inthesesituations,weestablishbeforethetestisconductedwhatteststatisticisneeded(calledthecriticalvalue)toclaimstatisticalsignificance.So,ifweknowforagivensamplingdistributionthatateststatisticofplusorminus1.96wouldonlyoccur5%ofthetimerandomly,anyteststatisticthatis1.96orgreaterinabsolutevaluewouldbestatisticallysignificant.Inananalysiswhereateststatisticwasexactly1.96,youwouldhavea5%chanceofbeingwrongifyouclaimedstatisticalsignificance.Iftheteststatisticwas3.00,statisticalsignificancecouldalsobeclaimedbuttheprobabilityofbeingwrongwouldbemuchless(about.002ifusinga2-tailedtestortwo-tenthsofonepercent;0.2%).Both.05and.002areknownasalpha;theprobabilityofaTypeIerror.

Whenconductingstatisticaltestswithcomputersoftware,theexactprobabilityofaTypeIerroriscalculated.Itispresentedinseveralformatsbutismostcommonlyreportedas"p<"or"Sig."or"Signif."or"Significance."Using"p<"asanexample,ifaprioriyouestablishedathresholdforstatisticalsignificanceatalpha.05,anyteststatisticwithsignificanceatorlessthan.05wouldbeconsideredstatisticallysignificantandyouwouldberequiredtorejectthenullhypothesisofnodifference.Thefollowingtablelinkspvalueswithabenchmarkalphaof.05:

 

P<

Alpha

ProbabilityofTypeIError

FinalDecision

.05

.05

5%chancedifferenceisnotsignificant

Statisticallysignificant

.10

.05

10%chancedifferenceisnotsignificant

Notstatisticallysignificant

.01

.05

1%chancedifferenceisnotsignificant

Statisticallysignificant

.96

.05

96%chancedifferenceisnotsignificant

Notstatisticallysignificant

StepstoHypothesisTesting

Hypothesistestingisusedtoestablishwhetherthedifferencesexhibitedbyrandomsamplescanbeinferredtothepopulationsfromwhichthesamplesoriginated.

GeneralAssumptions

∙Populationisnormallydistributed

∙Randomsampling

∙Mutuallyexclusivecomparisonsamples

∙Datacharacteristicsmatchstatisticaltechnique

Forinterval/ratiodatauseÊ

 

t-tests,Pearsoncorrelation,ANOVA,regression

 

Fornominal/ordinaldatauseÊ

 

Differenceofproportions,chisquareandrelatedmeasuresofassociation

StatetheHypothesis

NullHypothesis(Ho):

Thereisnodifferencebetween___and___.

AlternativeHypothesis(Ha):

Thereisadifferencebetween__and__.

Note:

Thealternativehypothesiswillindicatewhethera1-tailedora2-tailedtestisutilizedtorejectthenullhypothesis.

Hafor1-tailtested:

The__of__isgreater(orless)thanthe__of__.

SettheRejectionCriteria

Thisdetermineshowdifferenttheparametersand/orstatisticsmustbebeforethenullhypothesiscanberejected.This"regionofrejection"isbasedonalpha(

)--theerrorassociatedwiththeconfidencele

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1