introductory econometrics for finance Chapter8solutions.docx

上传人:b****1 文档编号:12450237 上传时间:2023-04-19 格式:DOCX 页数:13 大小:83.12KB
下载 相关 举报
introductory econometrics for finance Chapter8solutions.docx_第1页
第1页 / 共13页
introductory econometrics for finance Chapter8solutions.docx_第2页
第2页 / 共13页
introductory econometrics for finance Chapter8solutions.docx_第3页
第3页 / 共13页
introductory econometrics for finance Chapter8solutions.docx_第4页
第4页 / 共13页
introductory econometrics for finance Chapter8solutions.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

introductory econometrics for finance Chapter8solutions.docx

《introductory econometrics for finance Chapter8solutions.docx》由会员分享,可在线阅读,更多相关《introductory econometrics for finance Chapter8solutions.docx(13页珍藏版)》请在冰豆网上搜索。

introductory econometrics for finance Chapter8solutions.docx

introductoryeconometricsforfinanceChapter8solutions

SolutionstotheReviewQuestionsattheEndofChapter8

 

1.(a).AnumberofstylisedfeaturesoffinancialdatahavebeensuggestedatthestartofChapter8andinotherplacesthroughoutthebook:

-Frequency:

Stockmarketpricesaremeasuredeverytimethereisatradeorsomebodypostsanewquote,sooftenthefrequencyofthedataisveryhigh

-Non-stationarity:

Financialdata(assetprices)arecovariancenon-stationary;butifweassumethatwearetalkingaboutreturnsfromhereon,thenwecanvalidlyconsiderthemtobestationary.

-LinearIndependence:

Theytypicallyhavelittleevidenceoflinear(autoregressive)dependence,especiallyatlowfrequency.

-Non-normality:

Theyarenotnormallydistributed–theyarefat-tailed.

-Volatilitypoolingandasymmetriesinvolatility:

Thereturnsexhibitvolatilityclusteringandleverageeffects.

Ofthese,wecanallowforthenon-stationaritywithinthelinear(ARIMA)framework,andwecanusewhateverfrequencyofdataweliketoformthemodels,butwecannothopetocapturetheotherfeaturesusingalinearmodelwithGaussiandisturbances.

(b)GARCHmodelsaredesignedtocapturethevolatilityclusteringeffectsinthereturns(GARCH(1,1)canmodelthedependenceinthesquaredreturns,orsquaredresiduals),andtheycanalsocapturesomeoftheunconditionalleptokurtosis,sothateveniftheresidualsofalinearmodeloftheformgivenbythefirstpartoftheequationinpart(e),the

’s,areleptokurtic,thestandardisedresidualsfromtheGARCHestimationarelikelytobelessleptokurtic.StandardGARCHmodelscannot,however,accountforleverageeffects.

(c)Thisisessentiallya“whichdisadvantagesofARCHareovercomebyGARCH”question.ThedisadvantagesofARCH(q)are:

-Howdowedecideonq?

-Therequiredvalueofqmightbeverylarge

-Non-negativityconstraintsmightbeviolated.

WhenweestimateanARCHmodel,werequirei>0i=1,2,...,q(sincevariancecannotbenegative)

GARCH(1,1)goessomewaytogetaroundthese.TheGARCH(1,1)modelhasonlythreeparametersintheconditionalvarianceequation,comparedtoq+1fortheARCH(q)model,soitismoreparsimonious.SincetherearelessparametersthanatypicalqthorderARCHmodel,itislesslikelythattheestimatedvaluesofoneormoreofthese3parameterswouldbenegativethanallq+1parameters.Also,theGARCH(1,1)modelcanusuallystillcaptureallofthesignificantdependenceinthesquaredreturnssinceitispossibletowritetheGARCH(1,1)modelasanARCH(),solagsofthesquaredresidualsbackintotheinfinitepasthelptoexplainthecurrentvalueoftheconditionalvariance,ht.

(d)Thereareanumberthatyoucouldchoosefrom,andtherelevantonesthatwerediscussedinChapter8,inlcudingEGARCH,GJRorGARCH-M.

Thefirsttwoofthesearedesignedtocaptureleverageeffects.Theseareasymmetriesintheresponseofvolatilitytopositiveornegativereturns.ThestandardGARCHmodelcannotcapturethese,sincewearesquaringthelaggederrorterm,andwearethereforelosingitssign.

TheconditionalvarianceequationsfortheEGARCHandGJRmodelsarerespectively

And

t2=0+1

+t-12+ut-12It-1

whereIt-1=1ifut-10

=0otherwise

Foraleverageeffect,wewouldsee>0inbothmodels.

TheEGARCHmodelalsohastheaddedbenefitthatthemodelisexpressedintermsofthelogofht,sothateveniftheparametersarenegative,theconditionalvariancewillalwaysbepositive.Wedonotthereforehavetoartificiallyimposenon-negativityconstraints.

OneformoftheGARCH-Mmodelcanbewritten

yt=+otherterms+t-1+ut,utN(0,ht)

t2=0+1

+t-12

sothatthemodelallowsthelaggedvalueoftheconditionalvariancetoaffectthereturn.Inotherwords,ourbestcurrentestimateofthetotalriskoftheassetinfluencesthereturn,sothatweexpectapositivecoefficientfor.Notethatsomeauthorsuset(i.e.acontemporaneousterm).

(e).Sinceytarereturns,wewouldexpecttheirmeanvalue(whichwillbegivenby)tobepositiveandsmall.Wearenottoldthefrequencyofthedata,butsupposethatwehadayearofdailyreturnsdata,thenwouldbetheaveragedailypercentagereturnovertheyear,whichmightbe,say0.05(percent).Wewouldexpectthevalueof0againtobesmall,say0.0001,orsomethingofthatorder.Theunconditionalvarianceofthedisturbanceswouldbegivenby0/(1-(1+2)).Typicalvaluesfor1and2are0.8and0.15respectively.Theimportantthingisthatallthreealphasmustbepositive,andthesumof1and2wouldbeexpectedtobelessthan,butcloseto,unity,with2>1.

(f)Sincethemodelwasestimatedusingmaximumlikelihood,itdoesnotseemnaturaltotestthisrestrictionusingtheF-testviacomparisonsofresidualsumsofsquares(andat-testcannotbeusedsinceitisatestinvolvingmorethanonecoefficient).Thusweshoulduseoneoftheapproachestohypothesistestingbasedontheprinciplesofmaximumlikelihood(Wald,LagrangeMultiplier,LikelihoodRatio).Theeasiestonetousewouldbethelikelihoodratiotest,whichwouldbecomputedasfollows:

1.Estimatetheunrestrictedmodelandobtainthemaximisedvalueofthelog-likelihoodfunction.

2.Imposetherestrictionbyrearrangingthemodel,andestimatetherestrictedmodel,againobtainingthevalueofthelikelihoodatthenewoptimum.NotethatthisvalueoftheLLFwillbelikelytobelowerthantheunconstrainedmaximum.

 

3.Thenformthelikelihoodratioteststatisticgivenby

LR=-2(Lr-Lu)2(m)

whereLrandLuarethevaluesoftheLLFfortherestrictedandunrestrictedmodelsrespectively,andmdenotesthenumberofrestrictions,whichinthiscaseisone.

4.Ifthevalueoftheteststatisticisgreaterthanthecriticalvalue,rejectthenullhypothesisthattherestrictionsarevalid.

(g)Infact,itispossibletoproducevolatility(conditionalvariance)forecastsinexactlythesamewayasforecastsaregeneratedfromanARMAmodelbyiteratingthroughtheequationswiththeconditionalexpectationsoperator.

WeknowallinformationincludingthatavailableuptotimeT.TheanswertothisquestionwillusetheconventionfromtheGARCHmodellingliteraturetodenotetheconditionalvariancebyhtratherthant2.WhatwewanttogenerateareforecastsofhT+1T,hT+2T,...,hT+sTwhereTdenotesallinformationavailableuptoandincludingobservationT.Adding1then2then3toeachofthetimesubscripts,wehavetheconditionalvarianceequationsfortimesT+1,T+2,andT+3:

hT+1=0+1

+hT

(1)

hT+2=0+1

+hT+1

(2)

hT+3=0+1

+hT+2(3)

Let

betheonestepaheadforecastforhmadeattimeT.Thisiseasytocalculatesince,attimeT,weknowthevaluesofallthetermsontheRHS.Given

howdowecalculate

thatisthe2-stepaheadforecastforhmadeattimeT?

From

(2),wecanwrite

=0+1ET(

)+

(4)

whereET(

)istheexpectation,madeattimeT,of

whichisthesquareddisturbanceterm.Themodelassumesthattheseriesthaszeromean,sowecannowwrite

Var(ut)=E[(ut-E(ut))2]=E[(ut)2].

Theconditionalvarianceofutisht,so

htt=E[(ut)2]

Turningthisargumentaround,andapplyingittotheproblemthatwehave,

ET[(uT+1)2]=hT+1

butwedonotknowhT+1,sowereplaceitwith

sothat(4)becomes

=0+1

+

=0+(1+)

Whataboutthe3-stepaheadforecast?

Bysimilararguments,

=ET(0+1

+hT+2)

=0+(1+)

=0+(1+)[0+(1+)

]

Andsoon.Thisisthemethodwecouldusetoforecasttheconditionalvarianceofyt.Ifytwere,say,dailyreturnsontheFTSE,wecouldusethesevolatilityforecastsasaninputintheBlackScholesequationtohelpdeterminetheappropriatepriceofFTSEindexoptions.

(h)Ans-stepaheadforecastfortheconditionalvariancecouldbewritten

(x)

Forthenewvalueof,thepersistenceofshockstotheconditionalvariance,givenby(1+)is0.1251+0.98=1.1051,whichisbiggerthan1.Itisobviousfromequation(x),thatanyvaluefor(1+)biggerthanonewillleadtheforecaststoexplode.Theforecastswillkeeponincreasingandwilltendtoinfinityastheforecasthorizonincreases(i.e.assincreases).Thisisobviouslyanundesirablepropertyofaforecastingmodel!

Thisiscalled“non-stationarityinvariance”.

For(1+)<1,theforecastswillconvergeontheunconditionalvarianceastheforecasthorizonincreases.For(1+)=1,knownas“integratedGARCH”orIGARCH,thereisaunitrootintheconditionalvariance,andtheforecastswillstayconstantastheforecasthorizonincreases.

 

2.(a)Maximumlikelihoodworksbyfindingthemostlikelyvaluesoftheparametersgiventheactualdata.Morespecifically,alog-likelihoodfunctionisformed,usuallybaseduponanormalityassumptionforthedisturbanceterms,andthevaluesoftheparametersthatmaximiseitaresought.Maximumlikelihoodestimationcanbeemployedtofindparametervaluesforbothlinearandnon-linearmodels.

(b)Thethreehypothesistestingproceduresavailablewithinthemaximumlikelihoodapproacharelagrangemultiplier(LM),likelihoodratio(LR)andWaldtests.ThedifferencesbetweenthemaredescribedinFigure8.4,andarenotdefinedagainhere.TheLagrangemultipliertestinvolvesestimationonlyunderthenullhypothesis,thelikelihoodratiotestinvolvesestimationunderboththenullandthealternativehypothesis,whiletheWaldtestinvolvesestimationonlyunderthealternative.Giventhis,itshouldbeevidentthattheLMtestwillinmanycasesbethesimplesttocomputesincetherestrictionsimpliedbythenullhypothesiswillusuallyleadtosometermscancellingouttogiveasimplifiedmode

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 简洁抽象

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1