小学奥数行程问题核心精编版.docx

上传人:b****4 文档编号:12320369 上传时间:2023-04-18 格式:DOCX 页数:33 大小:90.58KB
下载 相关 举报
小学奥数行程问题核心精编版.docx_第1页
第1页 / 共33页
小学奥数行程问题核心精编版.docx_第2页
第2页 / 共33页
小学奥数行程问题核心精编版.docx_第3页
第3页 / 共33页
小学奥数行程问题核心精编版.docx_第4页
第4页 / 共33页
小学奥数行程问题核心精编版.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

小学奥数行程问题核心精编版.docx

《小学奥数行程问题核心精编版.docx》由会员分享,可在线阅读,更多相关《小学奥数行程问题核心精编版.docx(33页珍藏版)》请在冰豆网上搜索。

小学奥数行程问题核心精编版.docx

小学奥数行程问题核心精编版

行程问题

1、为什么说行程问题可以说是难度最大的奥数专题?

类型多:

行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓

题目难:

理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力

跨度大:

从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础

2、那么想要学好行程问题,需要掌握哪些要诀呢?

要诀一:

大部分题目有规律可依,要诀是"学透"基本公式

要诀二:

无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)

3、行程模块中包含哪些知识点,有何解题技巧?

例题讲解?

行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题、发车问题、电梯行程等知识点,本帖将在接下来的日子中,为大家逐步更新,以供参考学习。

奥数行程:

多人行程的要点及解题技巧

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:

火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”

  这三个量是:

路程(s)、速度(v)、时间(t)

  三个关系:

1.简单行程:

路程=速度×时间

  2.相遇问题:

路程和=速度和×时间

  3.追击问题:

路程差=速度差×时间

  牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

  如“多人行程问题”,实际最常见的是“三人行程”

  例:

有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:

这个花圃的周长是多少米?

  分析:

这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

  第一个相遇:

在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)

  第一个追击:

这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)

  第二个相遇:

在114分钟里,甲、乙二人一起走完了全程

  所以花圃周长为(40+38)×114=8892(米)

  我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

  总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!

奥数行程:

走走停停的要点及解题技巧

 一、行程问题里走走停停的题目应该怎么做

    1.画出速度和路程的图。

    2.要学会读图。

    3.每一个加速减速、匀速要分清楚,这有利于你的解题思路。

    4.要注意每一个行程之间的联系。

  二、学好行程问题的要诀

    行程问题可以说是难度最大的奥数专题。

    类型多:

行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓

    题目难:

理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力

    跨度大:

从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础

    那么想要学好行程问题,需要掌握哪些要诀呢?

    要诀一:

大部分题目有规律可依,要诀是"学透"基本公式

    要诀二:

无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)

    竞赛考试中的行程题涉及到很多中数学方法和思想(比如:

假设法、比例、方程)等的熟练运用,而这些方法和思想,都是小学奥数中最为经典并能考察孩子思维的专项。

  

  奥数行程:

多人行程例题及答案

(一)

  行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

  例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。

在距西村30公里处和乙相聚,问:

丙行了多长时间和甲相遇?

  答案一:

  设乙每小时行x公里,则甲为x+12,丙为x-15+12=x-3

  3.5*12=(x+12)*2

  x=9甲为21公里,丙为6公里,

  21*3.5*2/(21+6)=5.44小时

  丙行了5.44小时和甲相遇

  答案二:

  在距西村30公里处和乙相聚,则甲比乙多走60公里,

  而甲骑自行车每小时比乙快12公里,

  所以,甲乙相聚时所用时间是60/12=5小时,

  所以甲从西村到和乙相聚用了5-3.5=1.5小时,

  所以,甲速是:

30/1.5=20公里/小时,

  所以,丙速是:

20-15=5公里/小时,

  东村到西村的距离是:

20*3.5=70公里,

  所以,甲丙相遇时间是:

(2*70)/(20+5)=5.6小时

  例2.难度:

高难度

  甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

  【解答】

  解题思路:

(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。

另外ST图也是很关键)

  第一步:

当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)

  第二步:

接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24

  第三步:

综上整体看问题可以求出全程为:

(60+24)6=504或(48+24)7=504

  四步:

收官之战:

5048-24=39(千米)

  注意事项:

画图时,要标上时间,并且多人要同时标,以防思路错乱!

  例3.难度:

高难度

  李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。

0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:

张明每小时行驶多少千米?

  【解答】

  老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。

   奥数行程:

二次相遇例题及答案

(一)

  答题思路点拨:

甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

  例1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?

  A.120      B.100      C.90    D.80

  【解答】A。

解析:

设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

  例2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米

  A.200      B.150      C.120    D.100

  【解答】D。

解析:

第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

  绕圈问题:

  例3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?

  A.24分钟    B.26分钟  C.28分钟  D.30分钟

  【解答】C。

解析:

甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。

也就是说,两人16分钟走一圈。

从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。

也是一个倍数关系。

奥数行程:

二次相遇例题及答案

(二)

  例1.两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。

甲乙两地相距多少千米?

(适于五年级程度)

  【解答】两辆汽车从同时相对开出到相遇各行4小时。

一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。

两车行驶路程之和,就是两地距离。

  56×4=224(千米)

  63×4=252(千米)

  224+252=476(千米)

  综合算式:

  56×4+63×4

  =224+252

  =476(千米)

  答:

甲乙两地相距476千米。

  例2.两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。

5小时后,两列火车相距多少千米?

(适于五年级程度)

  解:

此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

  480-(40+42)×5

  =480-82×5

  =480-410

  =70(千米)

  答:

5小时后两列火车相距70千米。

  例3.两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,第一列火车比第二列火车多行了20千米。

求甲、乙两地间的距离。

(适于五年级程度)

  解:

两车相遇时,两车的路程差是20千米。

出现路程差的原因是两车行驶的速度不同,第一列火车每小时比第二列火车多行(60-55)千米。

由此可求出两车相遇的时间,进而求出甲、乙两地间的距离。

  (60+55)×[20÷(60-55)]

  =115×[20÷5]

  =460(千米)

  答:

甲、乙两地间的距离为460千米。

奥数行程:

追及问题的要点及解题技巧

  一、多人相遇追及问题的概念及公式

  多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

  所有行程问题都是围绕""这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:

  多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.

  二、多次相遇追及问题的解题思路

  所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.

  多次相遇与全程的关系

  1.两地相向出发:

  第1次相遇,共走1个全程;

  第2次相遇,共走3个全程;

  第3次相遇,共走5个全程;

  …………,………………;

  第N次相遇,共走2N-1个全程;

  注意:

除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

  2.同地同向出发:

    第1次相遇,共走2个全程;

    第2次相遇,共走4个全程;

    第3次相遇,共走6个全程;

    …………,………………;

    第N次相遇,共走2N个全程;

    3、多人多次相遇追及的解题关键

    多次相遇追及的解题关键几个全程

    多人相遇追及的解题关键路程差.

奥数行程:

火车过桥的例题及答案

(一)

  例1.一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?

  【解答】列车过桥,就是从车头上桥到车尾离桥止。

车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。

  解:

(800+150)÷19=50(秒)  答:

全车通过长800米的大桥,需要50秒。

  例2.一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?

  【解答】先求出车长与隧道长的和,然后求出隧道长。

火车从车头进洞到车尾离洞,共走车长+隧道长。

这段路程是以每秒8米的速度行了40秒。

  解:

(1)火车40秒所行路程:

8×40=320(米)

  

(2)隧道长度:

320-200=120(米)

  答:

这条隧道长120米。

 例3.一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?

  【解答】本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。

依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。

  解:

(1)火车与小华的速度和:

15+2=17(米/秒)  

(2)相距距离就是一个火车车长:

119米

  (3)经过时间:

119÷17=7(秒)

  答:

经过7秒钟后火车从小华身边通过。

奥数行程:

流水行船的要点及解题技巧

一、什么叫流水行船问题 船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

二、流水行船问题中有哪三个基本量?

流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用. 

三、流水行船问题中的三个基本量之间有何关系?

流水行船问题还有以下两个基本公式:

顺水速度=船速+水速,

(1)

逆水速度=船速-水速.

(2)

这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:

水速=顺水速度-船速,

船速=顺水速度-水速。

由公式

(2)可以得到:

水速=船速-逆水速度,

船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式

(1)和公式

(2),相加和相减就可以得到:

船速=(顺水速度+逆水速度)÷2,

水速=(顺水速度-逆水速度)÷2。

奥数行程:

走走停停的例题及答案

(一)

例1.甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?

【解答】这样的题有三种情况:

在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。

很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。

其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。

由此首先考虑休息800÷200-1=3分钟的情况。

甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。

行5200米要休息5200÷200-1=25分钟。

因此甲需要52+25=77分钟第一次追上乙。

例2.在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?

【解答】这是传说中的“走走停停”的行程问题。

这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。

显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。

有了以上的分析,我们就可以来解答这个题了。

我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。

继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。

因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。

即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。

注:

这种方法不适于休息点不同的题,具有片面性。

例3.在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?

      

这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。

显然我们考虑的顺序是首先看是否在结束时追上,又是否在休息中追上,最后考虑在行进中追上。

有了以上的分析,我们就可以来解答这个题了。

我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7和200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。

继续讨论,因为270/7÷40/7不是整数,说明第一次追上不是在乙休息结束的时候追上的。

因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息的中追上的。

即甲共行了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。

奥数行程:

多人行程例题及答案

(二)

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

例1.AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?

【解答】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。

对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。

甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。

甲步行1千米比乙少用1/4-1/5=1/20小时。

,所以甲比乙多步行的路程是乙步行路程的:

1/20/(3/20=1/3.

这样设乙丙步行路程为3份,甲步行4份。

如下图安排:

这样甲骑车行骑车的3/5,步行2/5.

所以时间为:

30*3/5/20+30*2/5/5=3.3小时。

例2.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:

这个花圃的周长是多少米?

【解答】这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:

在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)

第一个追击:

这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)

第二个相遇:

在114分钟里,甲、乙二人一起走完了全程

所以花圃周长为(40+38)×114=8892(米)

我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

 总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!

奥数行程:

二次相遇的要点及解题技巧

  一、概念:

 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

  二、特点:

它的特点是两个运动物体共同走完整个路程。

  小学数学教材中的行程问题,一般是指相遇问题。

  三、类型:

  相遇问题根据数量关系可分成三种类型:

求路程,求相遇时间,求速度。

  四、三者的基本关系及公式:

  它们的基本关系式如下:

  总路程=(甲速+乙速)×相遇时间

  相遇时间=总路程÷(甲速+乙速)

  另一个速度=甲乙速度和-已知的一个速度.

奥数行程:

追及问题例题及答案

(二)

 例1.上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。

问这时是几点几分?

【解答】先画出示意图图37-1如下(图37-1中A点表示爸爸第一次追上小明的地方,B点表示他第二次追上小明的地方)。

从图37-1上看出,在相同时间(从第一次追上到第二次追上)内,小明从A点到B点,行完(8-4=)4千米;爸爸先从A点到家,再从家到B点,行完(8+4=)12千米。

可见,爸爸的速度是小明的(12÷4=)3倍。

从而,行完同样多的路程(比如从家到A点),小明所用的时间就是爸爸的3倍。

      

 由于小明从家出发8分钟后爸爸去追他,并且在A点追上,所以,小明从家到A点比爸爸多用8分钟。

这样可以算出,小明从家到A所用的时间为

 8÷(3-1)×3=12(分)

 8÷(3-1)×3×X2=24(分)

例2.A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:

当甲到达B地时,乙追上甲几次?

        

 【解答】由上图容易看出:

在第一次相遇与第一次追上之间,乙在100-80=20(分钟)内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍(=180÷20),则BF的长为AF的9倍,所以,甲从A到B,共需走80×(1+9)=800(分钟),乙第一次追上甲时,所用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 党团建设

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1