北师大版数学七年级上册期中考试试题含答案.docx

上传人:b****4 文档编号:12201244 上传时间:2023-04-17 格式:DOCX 页数:21 大小:115.87KB
下载 相关 举报
北师大版数学七年级上册期中考试试题含答案.docx_第1页
第1页 / 共21页
北师大版数学七年级上册期中考试试题含答案.docx_第2页
第2页 / 共21页
北师大版数学七年级上册期中考试试题含答案.docx_第3页
第3页 / 共21页
北师大版数学七年级上册期中考试试题含答案.docx_第4页
第4页 / 共21页
北师大版数学七年级上册期中考试试题含答案.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

北师大版数学七年级上册期中考试试题含答案.docx

《北师大版数学七年级上册期中考试试题含答案.docx》由会员分享,可在线阅读,更多相关《北师大版数学七年级上册期中考试试题含答案.docx(21页珍藏版)》请在冰豆网上搜索。

北师大版数学七年级上册期中考试试题含答案.docx

北师大版数学七年级上册期中考试试题含答案

北师大版数学七年级上册期中考试试卷

一、选择题(本大题共10小题,每小题4分,共40分)

1.(4分)化简﹣2+3的结果是(  )

A.﹣1B.1C.﹣5D.5

2.(4分)下面几何体截面一定是圆的是(  )

A.圆柱B.圆锥C.球D.圆台

3.(4分)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是(  )

A.24.70千克B.25.30千克C.24.80千克D.25.51千克

4.(4分)在数轴上表示4与﹣3的两个点之间的距离是(  )

A.﹣1B.1C.﹣7D.7

5.(4分)下列图形中,不是三棱柱的表面展开图是(  )

A.

B.

C.

D.

6.(4分)下列说法正确的是(  )

A.两个有理数的和一定大于每一个加数

B.互为相反数的两个数的和等于零

C.若两个数的和为正,则这两个数都是正数

D.若|a|=|b|,则a=b

7.(4分)绝对值小于3的所有整数的和是(  )

A.3B.0C.6D.﹣6

8.(4分)一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是(  )

A.正方体B.圆锥C.圆柱D.球

9.(4分)若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y等于(  )

A.1B.2C.3D.1或3

10.(4分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为(  )

A.

B.

C.

D.

 

二、填空题(本大题共4小题,每小题5分,共20分)

11.(5分)﹣1的相反数是  .

12.(5分)小志家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为  .

13.(5分)由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:

mm)可知这两个长方体的体积之和是  mm3.

14.(5分)将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有  块.

 

三、(本大题共2小题,每小题8分,共16分)

15.(8分)计算:

﹣|﹣1|+|

|+(﹣2).

16.(8分)计算:

﹣0.5﹣(﹣3

)+2.75﹣7.5.

 

四、(本大题共2小题,每小题8分,共16分)

17.(8分)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A、B、C分别表示的数.

18.(8分)画数轴表示下列有理数,并用“<”连接各数.

﹣2.5;0;4;﹣1;0.4.

 

五、(本大题共2小题,每小题10分,共20分)

19.(10分)实数a,b,c在数轴上的位置如图所示.

(1)比较大小:

|a|与|b|.

(2)化简:

|c|﹣|a|+|﹣b|+|﹣a|.

20.(10分)(2017秋•埇桥区期中)如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据要求回答问题:

(1)如果1点在上面,3点在左面,几点在前面?

(2)如果3点在下面,几点在上面?

 

六、(本题满分12分)

21.(12分)如图所示的是某几何体的三种形状图.

(1)说出这个几何体的名称;

(2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).

 

七、(本题满分12分)

22.(12分)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:

日期

10月1日

10月2日

10月3日

10月4日

10月5日

购进(千克)

55

45

50

50

50

库存变化(千克)

4

﹣2

﹣8

2

﹣3

损耗(千克)

1

4

12

2

1

(1)10月3日卖出香蕉  千克.

(2)问卖出香蕉最多的一天是哪一天?

(3)这五天经营结束后,库存是增加了还是减少了?

变化了多少?

 

八、(本题满分14分)

23.(14分)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:

圆的周长C=2πr,本题中π的取值为3.14)

(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是  ;

(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:

+2,﹣1,﹣5,+4,+3,﹣2

①第几次滚动后,Q点距离原点最近?

第几次滚动后,Q点距离原点最远?

②当圆片结束运动时,Q点运动的路程共有多少?

此时点Q所表示的数是多少?

 

参考答案与试题解析

 

一、选择题(本大题共10小题,每小题4分,共40分)

1.(4分)(2014•温州二模)化简﹣2+3的结果是(  )

A.﹣1B.1C.﹣5D.5

【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.

【解答】解:

原式=+(3﹣2)=+1,

故选:

B.

【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值.

 

2.(4分)(2017秋•埇桥区期中)下面几何体截面一定是圆的是(  )

A.圆柱B.圆锥C.球D.圆台

【分析】根据题意,分别分析四个几何体截面的形状,解答出即可.

【解答】解:

由题意得,

圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,球的截面一定是圆.

故选:

C.

【点评】本题考查了几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.

 

3.(4分)(2017•邕宁区校级模拟)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是(  )

A.24.70千克B.25.30千克C.24.80千克D.25.51千克

【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.

【解答】解:

“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,

故只有24.80千克合格.

故选:

C.

【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.

 

4.(4分)(2017秋•埇桥区期中)在数轴上表示4与﹣3的两个点之间的距离是(  )

A.﹣1B.1C.﹣7D.7

【分析】根据题意可得算式4﹣(﹣3),再计算即可.

【解答】解:

4﹣(﹣3)=4+3=7,

故选:

D.

【点评】此题主要考查了数轴,关键是正确在数轴上表示数.

 

5.(4分)(2007•眉山)下列图形中,不是三棱柱的表面展开图是(  )

A.

B.

C.

D.

【分析】利用棱柱及其表面展开图的特点解题.

【解答】解:

A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.

故选:

D.

【点评】棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.

 

6.(4分)(2017秋•埇桥区期中)下列说法正确的是(  )

A.两个有理数的和一定大于每一个加数

B.互为相反数的两个数的和等于零

C.若两个数的和为正,则这两个数都是正数

D.若|a|=|b|,则a=b

【分析】根据有理数的加法法则,绝对值的性质,进而得出正确结果.

【解答】解:

A.如(﹣1)+2=1,1<2,故A错误;

B.互为相反数的两个数的和等于零,故B正确;

C.如(﹣1)+2=1,﹣1<0,故C错误;

D.若|a|=|b|,则a=±b,故D错误.

故选:

B.

【点评】本题考查了有理数的加法法则,解此题的关键是熟练掌握有理数的加法法则.

 

7.(4分)(2017秋•埇桥区期中)绝对值小于3的所有整数的和是(  )

A.3B.0C.6D.﹣6

【分析】根据绝对值的意义得到绝对值小于3的整数有±2,±1,0,然后它们的和.

【解答】解:

绝对值小于3的整数有±2,±1,0,

所以绝对值小于3的所有整数的和=﹣2+2+(﹣1)+1+0=0.

故选:

B.

【点评】本题考查了绝对值:

若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了有理数的加法.

 

8.(4分)(2017秋•埇桥区期中)一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是(  )

A.正方体B.圆锥C.圆柱D.球

【分析】几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.

【解答】解:

根据圆柱的特征可知:

此几何体是圆柱.

故选:

C.

【点评】此题主要考查了由三视图判断几何体,熟练掌握常见图形的三视图是解题关键.

 

9.(4分)(2017秋•埇桥区期中)若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y等于(  )

A.1B.2C.3D.1或3

【分析】根据绝对值的性质可得x=±1,y=±2,然后再根据x+y为正数确定x、y的值,进而可得答案.

【解答】解:

∵|x|=1,|y|=2,

∴x=±1,y=±2,

∵x+y为正数,

∴①x=1,y=2,x+y=3,

②x=﹣1,y=2,x+y=1,

故选:

D.

【点评】此题主要考查了有理数的加法,以及绝对值,关键是正确确定x、y的值.

 

10.(4分)(2016•蒸湘区校级三模)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为(  )

A.

B.

C.

D.

【分析】根据面动成体的原理:

一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.

【解答】解:

A、圆柱是由一长方形绕其一边长旋转而成的;

B、圆锥是由一直角三角形绕其直角边旋转而成的;

C、该几何体是由直角梯形绕其下底旋转而成的;

D、该几何体是由直角三角形绕其斜边旋转而成的.

故选:

D.

【点评】解决本题的关键是掌握各种面动成体的体的特征.

 

二、填空题(本大题共4小题,每小题5分,共20分)

11.(5分)(2004•泉州)﹣1的相反数是 1 .

【分析】求一个数的相反数就是在这个数前面添上“﹣”号.

【解答】解:

根据相反数的定义,得﹣1的相反数是1.

【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.

一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.

学生易把相反数的意义与倒数的意义混淆.

 

12.(5分)(2017秋•埇桥区期中)小志家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为 ﹣2℃ .

【分析】调高是增加,调高后的温度=原来的温度+调高的温度.

【解答】解:

由题意,﹣6℃+4℃

=﹣2℃

故答案为:

﹣2℃

【点评】本题考查了有理数的加法.根据题意列出式子是关键.

 

13.(5分)(2017秋•埇桥区期中)由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:

mm)可知这两个长方体的体积之和是 128 mm3.

【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.

【解答】解:

根据三视图可得:

上面的长方体长4mm,高4mm,宽2mm,

下面的长方体长6mm,宽8mm,高2mm,

∴立体图形的体积是:

4×4×2+6×8×2=128(mm3),

故答案为:

128

【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.

 

14.(5分)(2017秋•埇桥区期中)将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有 4或5 块.

【分析】根据主视图与左视图,确定出小方块的个数即可.

【解答】解:

将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,

则这堆小方块共有4或5块,

故答案为:

4或5

【点评】此题考查了由三视图判断几何体,熟练掌握三视图的画法是解本题的关键.

 

三、(本大题共2小题,每小题8分,共16分)

15.(8分)(2017秋•埇桥区期中)计算:

﹣|﹣1|+|

|+(﹣2).

【分析】根据有理数的加减混合运算法则计算.

【解答】解:

原式=﹣1+

﹣2

=﹣

【点评】本题考查的是有理数的加减混合运算,掌握有理数的加减混合运算法则是解题的关键.

 

16.(8分)(2017秋•埇桥区期中)计算:

﹣0.5﹣(﹣3

)+2.75﹣7.5.

【分析】根据有理数的加减混合运算法则计算.

【解答】解:

原式=(﹣0.5﹣7.5)+(3

+2.75)

=﹣8+6

=﹣2.

【点评】本题考查的是有理数的加减混合运算,掌握有理数的加减混合运算法则是解题的关键.

 

四、(本大题共2小题,每小题8分,共16分)

17.(8分)(2017秋•埇桥区期中)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A、B、C分别表示的数.

【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相反数的定义求出A、B、C即可得解.

【解答】解:

正方体的表面展开图,相对的面之间一定相隔一个正方形,

“A”与“5”是相对面,

“B”与“π”是相对面,

“C”与“﹣

”是相对面,

∵相对面上的两数互为相反数,

∴A、B、C表示的数依次是﹣5,﹣π,

【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.

 

18.(8分)(2017秋•埇桥区期中)画数轴表示下列有理数,并用“<”连接各数.

﹣2.5;0;4;﹣1;0.4.

【分析】首先在数轴上表示各数,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把它们连接起来即可.

【解答】解:

如图所示:

﹣2.5<﹣1<0<0.4<4.

【点评】此题主要考查了有理数的比较大小,关键是正确在数轴上表示各数.

 

五、(本大题共2小题,每小题10分,共20分)

19.(10分)(2017秋•埇桥区期中)实数a,b,c在数轴上的位置如图所示.

(1)比较大小:

|a|与|b|.

(2)化简:

|c|﹣|a|+|﹣b|+|﹣a|.

【分析】

(1)根据数轴上表示a与b的点离原点的远近即可得到两数绝对值的大小;

(2)根据数轴上点的位置判断出a,b,c的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.

【解答】解:

(1)|a|<|b|.

(2)|c|﹣|a|+|﹣b|+|﹣a|

=﹣c﹣a﹣b+a

=﹣b﹣c.

【点评】此题考查了整式的加减,绝对值,有理数大小比较,以及实数与数轴,涉及的知识有:

去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.

 

20.(10分)(2017秋•埇桥区期中)如图所示的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请根据要求回答问题:

(1)如果1点在上面,3点在左面,几点在前面?

(2)如果3点在下面,几点在上面?

【分析】

(1)利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面;

(2)根据

(1)可得,如果3点在下面,那4点在上面.

【解答】解:

这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,

(1)如果1点在上面,3点在左面,可知5点在后面,2点在前面;

(2)如果3点在下面,那么4点在上面.

【点评】本题考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.

 

六、(本题满分12分)

21.(12分)(2017秋•埇桥区期中)如图所示的是某几何体的三种形状图.

(1)说出这个几何体的名称;

(2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).

【分析】

(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;

(2)三个长为15cm,宽分别为3cm、4cm、5cm的长方形的面积即是几何体的侧面积.

【解答】解:

(1)由三视图可知,这个几何体是三棱柱;

(2)侧面积:

3×15+4×15+5×15=180(cm2).

【点评】此题考查从三视图判断几何体,掌握棱柱的侧面都是长方形,上下底面是几边形就是几棱柱是解决问题的关键.

 

七、(本题满分12分)

22.(12分)(2017秋•埇桥区期中)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:

日期

10月1日

10月2日

10月3日

10月4日

10月5日

购进(千克)

55

45

50

50

50

库存变化(千克)

4

﹣2

﹣8

2

﹣3

损耗(千克)

1

4

12

2

1

(1)10月3日卖出香蕉 46 千克.

(2)问卖出香蕉最多的一天是哪一天?

(3)这五天经营结束后,库存是增加了还是减少了?

变化了多少?

【分析】

(1)根据正负数的定义计算即可;

(2)求出每天卖出的香蕉的数量即可判断;

(3)求出库存的数据之和即可判断;

【解答】解:

(1)50﹣(﹣8)﹣12=46(千克),

故答案为46.

(2)10月1日卖出的香蕉55﹣4﹣1=50(千克),

10月2日卖出的香蕉45﹣(﹣2)﹣4=43(千克),

10月3日卖出的香蕉50﹣(﹣8)﹣2=46(千克),

10月4日卖出的香蕉50﹣2﹣2=46(千克),

10月5日卖出的香蕉5﹣(﹣3)﹣1=52(千克),

∴卖出香蕉最多的一天是10月5日;

(3)4+(﹣2)+(﹣8)+2+(﹣3)=﹣7,

答:

库存减少了,减少了7千克;

【点评】本题考查相反数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

 

八、(本题满分14分)

23.(14分)(2017秋•埇桥区期中)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:

圆的周长C=2πr,本题中π的取值为3.14)

(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是 6.28 ;

(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:

+2,﹣1,﹣5,+4,+3,﹣2

①第几次滚动后,Q点距离原点最近?

第几次滚动后,Q点距离原点最远?

②当圆片结束运动时,Q点运动的路程共有多少?

此时点Q所表示的数是多少?

【分析】

(1)利用圆的半径以及滚动周数即可得出滚动距离;

(2)①利用滚动的方向以及滚动的周数即可得出Q点移动距离变化;

②利用绝对值得性质以及有理数的加减运算得出移动距离和Q表示的数即可.

【解答】解:

(1)∵2πr=2×3.14×1=6.28,

∴点A表示的数是6.28,

故答案为:

6.28;

(2)①∵+2﹣1﹣5+4=0,

∴第4次滚动后,Q点距离原点最近;

∵(+2)+(﹣1)+(﹣5)=﹣4,

∴第3次滚动后,Q点距离原点最远;

②∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,

∴17×2π×1=106.76,

∴当圆片结束运动时,Q点运动的路程共有106.76,

∵2﹣1﹣5+4+3﹣2=1,

∴1×2π×1=6.28,

∴此时点Q所表示的数是6.28.

【点评】此题主要考查了数轴的应用以及绝对值得性质和圆的周长公式应用,利用数轴得出对应数是解题关键.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 日语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1