四年级上册42总价路程问题.docx
《四年级上册42总价路程问题.docx》由会员分享,可在线阅读,更多相关《四年级上册42总价路程问题.docx(12页珍藏版)》请在冰豆网上搜索。
四年级上册42总价路程问题
三位数乘两位数
第2节总价、路程问题
【知识梳理】
1.总价问题
(1)、明确单价、数量和总价的含义
每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的钱数,叫做总价。
(2)、探究单价、数量和总价之间的关系
根据乘、除法之间的互逆关系,可以推导出:
总价÷数量=单价,总价÷单价=数量。
(3)、归纳总结:
①每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的钱数,叫做总价。
②单价×数量=总价,总价÷数量=单价,总价÷单价=数量。
2.路程问题
(1)、明确路程、速度和时间的含义
一共行了多长的路,就做路程;每小时(或每分钟等)行的路程,就做速度;行了几小时(或几分钟等),叫做时间。
(2)、明确速度的表示方法和读法
一辆汽车的速度是每小时70千米,写作70千米/时,读作70千米每时;一个人骑自行车的速度是每分钟225米,写作225米/分,读作225米每分。
[重点提示:
千米/时、米/分都是用复合单位表示速度。
书写时要按从左到右的顺序。
]
(3)、探究速度、时间和路程的关系
速度×时间=路程
根据乘、除法之间的互逆关系,可以推导出:
路程÷时间=速度,路程÷速度=时间。
(4)、归纳总结:
①一共行了多长的路,就做路程;每小时(或每分钟等)行的路程,就做速度;行了几小时(或几分钟等),叫做时间。
②速度×时间=路程,路程÷时间=速度,路程÷速度=时间。
3.火车过桥
(1)定义:
①完全过桥:
指从车头上桥,到车尾离开桥的过程,火车路程=桥长+车长.
②完全在桥上:
指从车尾上桥,到车头开始离开桥的过程,火车路程=桥长
车长.
③一般我们所说的火车过桥是指完全过桥的这种情况.
(2)公式总结:
完全过桥:
(桥长+车身长)÷速度=过桥时间
完全在桥上:
(桥长—车身长)÷速度=过桥时间
【诊断自测】
1.
(1)每顶帽子18元,买3顶要多少钱?
(2)苹果每千克10元,买5千克要多少钱?
2.将下表补充完整
速度(千米/时)
60
96
5
时间(时)
5
4
7
140
路程(千米)
500
3.一列长200米的火车,每秒行驶32米,这列火车经过一座大桥时,从车头上桥到车尾离开桥共用39秒,这座大桥长多少米?
【考点突破】
类型一:
认识常见的数量关系
例1.填空
(1)光在真空中的传播速度约是每秒300000千米,光在真空中的传播速度可以写作()
(2)某动车组列车的速度是每小时300千米,该动车组列车的速度可以写作()
(3)甲地到乙地的路程是160千米,李叔叔开车从甲地到乙地用了2小时,李叔叔开车平均每小时行(),李叔叔开车的平均速度是()
(4)人造卫星6秒约行48千米,它的平均速度约是()
(5)小红买5本同样的日记花了10元,照这样计算,她买7本这样的日记应花()元;小丽有24元,能买()本这样的日记本。
答案:
(1)300000千米/秒
(2)300千米/时(3)80千米80千米/时(4)8千米/秒(5)1412
解析:
熟练掌握关于行程三要素的定义以及分清单价、数量、总价之间的关系。
类型二:
填表问题
种类
《连环画》
《故事书》
《科技书》
单价/元
30
40
本数
150
8
总价/元
200
360
例2.
(1)
出行方式
步行
骑电动车
乘公共汽车
速度
75米/分
40千米/时
时间
20分钟
3小时
路程
240千米
210千米
(2)
答案:
(1)25元/本9本4500元
(2)70千米/时6时1500千米
解析:
单价×数量=总价;速度×时间=路程
类型三:
运用抓不变量法解决生活中的问题
例3.每颗树苗原价16元,现在买3棵送1棵,用原来买3棵树苗的钱买了4棵树苗,每棵树苗便宜多少钱?
答案:
解法一16×3÷4=12元解法二16÷4=4元
解析:
解法一买3棵送1棵,可知总价不变,也就是只需要花3棵树苗的钱,就可以买到3+1=4棵树苗,先根据总价=单价×数量,求出买3棵树苗的钱,再根据单价=总价÷数量,求出优惠后的树苗的单价,最后再相减。
解法二从节省的钱入手,直接用节省的钱数÷总共买树苗的棵数就是每棵树苗便宜的钱数。
例4.一辆汽车上山的速度为36千米/时,行驶5小时到达山顶,下山时按原路返回只用了4小时,汽车下山时平均每小时行多少千米?
答案:
36乘5=180千米,180÷4=45千米
解析:
因为上山和下山的总路程是不变的,所以上山速度×上山时间=下山速度×下山时间,进而求解。
类型四:
火车过桥
例5.一列火车每秒行驶20米,车身长320米,那么它通过一个电线杆的时间是多少秒?
这列火车通过一座长度为800米的大桥,需要多长时间?
答案:
16秒56秒
解析:
电线杆可以看成没有长度的桥,
秒;
秒
例6.一列火车通过440米长的桥需要40秒,以同样的速度穿过310米长的隧道需要30秒.这列火车的速度是__________米/秒,车身长是__________米.
答案:
13米/秒80米
解析:
因为火车的速度和长度是不变的,
火车的长度+440=火车的速度×40
火车的长度+310=火车的速度×30
所以,(440-330)÷(40-30)=火车的速度=13米/秒
火车的长度=13×40-440=80米
此题一定要抓住哪些是变化的量哪些是不变的量,熟记火车过桥的公式进行求解。
例7.已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车在桥上的时间为80秒,求火车的速度和长度.
答案:
10米/秒200米
解析:
本题考了两个知识点,是完全过桥和完全在桥上。
但不管是哪种情况,火车的速度和火车的长度是不会变化的。
由此可知
完全过桥时:
火车长度+1000=火车速度×120
完全在桥上时:
1000-火车长度=火车速度×80
所以,2000=(120+80)×火车速度,火车速度=10米/秒
火车长度=10×120+-1000=200米
【易错精选】
1、判断:
燕子的飞行速度约是95千米。
(√)
错解分析:
此题错在没有掌握速度的含义,速度是单位时间内走过的路程,而此题只写出了路程,对应的单位时间没写出来。
速度单位是复合单位,即“路程单位/时间单位”。
错解改正:
×
2、汽车5分钟行驶了5千米,照这样计算,8分钟行驶了多少千米?
5×8=40(千米)答:
8分钟行驶了40千米。
错解分析:
此题错在把5分钟行驶的路程当成速度直接参与运算了。
要分清路程和速度:
路程是指一定时间内所行驶的路的长度;速度是指单位时间内所行驶的路程长度。
错解改正:
5÷5×8=8(千米)答:
8分钟行驶了8千米
【精华提炼】
1.单价×数量=总价,总价÷数量=单价,总价÷单价=数量。
2.速度×时间=路程,路程÷时间=速度,路程÷速度=时间。
3.完全过桥:
(桥长+车身长)÷速度=过桥时间
完全在桥上:
(桥长—车身长)÷速度=过桥时间
【本节训练】
训练【1】填一填
(1)一共行了多长的路,叫做(),每小时(或每分钟等)行的路程,叫做();行了几小时(或几分钟等),叫做()。
(2)一辆汽车的速度是每小时85千米,可写作(),读作()。
(3)李军步行的速度是每分钟65米,可写作(),读作()。
(4)一种超音速飞机2秒钟可以飞行700米,它的速度可写作(),读作()。
(5)一列火车的速度是120千米/时,表示()。
(6)速度时间=()
训练【2】不解答,只说出下面各题已知的是什么,要求的是什么。
(在括号里填“时间”“速度”或“路程”)
(1)小红每小时走5千米,她3小时走多少千米?
已知()和(),要求的是()。
(2)汽车每小时行80千米,行240千米要用多长时间?
已知()和(),要求的是()。
训练【3】判断对错
(1)已知汽车行的速度和行驶的时间,求路程,要用速度乘时间。
()
(2)“一盒笔有5支,共30元,求每支多少钱?
”这道题求的是总价。
()
(3)已知8分钟行的路程,可以求速度。
()
训练【4】
一辆汽车从物资储备仓库往山区运送救灾物资,每小时行65千米,行了6小时到达目的地。
原路返回时用了5小时,返回时平均每小时行多少千米?
训练【5】
一座铁路桥长1200米,一列火车开过大桥需75秒;火车开过路旁一根电线杆需15秒.求火车的速度和车长.
基础巩固
1.把下面的表格填完整
名称
单价/元
数量/箱
总价/元
苹果
28
36
橘子
18
810
桃
18
864
2.填空
(1)一只鸵鸟每小时跑18千米,这只鸵鸟奔跑的速度可以写作()。
(2)小明步行的速度是60米/分,他从家到学校一共走了10分钟,小明家到学校有()米。
(3)飞机每小时飞行800千米,可以说飞机的飞行速度是()
(4)丽丽1分钟能打118个字,照这样计算,她半小时能打()个字
3.选择
(1)一辆汽车3小时行驶了240千米,这辆汽车的平均速度是()。
A.240千米/时B.80千米/时C.720千米/时
(2)郑爷爷步行的速度是5千米/时,王爷爷步行的速度是70米/分,刘爷爷每分钟走65米,这三个人中,()步行的速度最快。
A.郑爷爷B.王爷爷C.刘爷爷
4.解决问题
(1)一艘轮船从甲地运送货物到乙地,去时的平均速度是35千米/时,用了6小时,按原路返回时用了7小时。
①这艘船从甲地到乙地共航行了多少千米?
②原路返回时轮船平均每小时行多少千米?
(2)张老师买了3个同样的篮球用了132元,他想在买12个这样的篮球,还需要多少钱?
(3)司机王叔叔从厦门出发去福州送货,路上共用了5小时,前3小时的平均速度是60千米/时,后2小时共行驶了100千米,王叔叔一共行驶了多少千米?
(4)学校一共买了32张电脑桌,每张电脑桌120元,已经预付了800元,还应再付多少钱?
(5)卡车在普通公路上以每小时40千米的速度行驶,4小时后准备返回,返回的速度是去时的2倍,问几小时可以返回。
(6)一列火车长240米,这列火车每秒行25米,从车头进山洞到全车出山洞共用12秒,山洞长多少米?
(7)一辆客车经过一座大桥,大桥长1029米,这辆客车长8米,客车每秒行17米,这辆客车通过这座大桥需要多少秒?
巅峰突破
1.刘老师带了300元去买足球。
若买A品牌足球恰好能买6个,若买B品牌足球则会少买1个,每个B品牌足球比A品牌足球贵多少钱?
2.甲、乙两车同时从A、B两地相对开出,已知甲车每小时行驶45千米,乙车每小时行驶50千米,3小时后两车还差90千米没有相遇。
求A、B两地相距多少千米?
3.一列火车通过一座长430米的大桥用了30秒,它通过一条长2180米的隧道时,速度提高了一倍,结果只用了50秒,这列火车长__________米.
参考答案
【诊断自测】
1.
(1)18×3=54(元)
(2)10×5=50(元)
2.(从左至右)300125672700
3.32×39-200=1048(米)答:
这座大桥长1048米
【本节训练】
训练【1】
(1)路程速度时间
(2)85千米/时85千米每时(3)65米/分65米每分(4)350米/秒350米每秒(5)火车每小时行驶120千米(6)×路程
训练【2】
(1)速度时间路程
(2)速度路程时间
训练【3】
(1)√
(2)×(3)√
训练【4】
65×6÷5=78千米/时答:
速度为78千米/时
训练【5】
火车速度20米/秒;车长300米
基础巩固
1.(从上到下)1008、45、48
2.
(1)18千米/时
(2)600(3)800千米/时(4)3540
3.
(1)B
(2)A
4.
(1)①35×6=210(千米)②210÷7=30(千米)
(2)132÷3=44(元)44×12=528(元)
(3)60×3+100=280(千米)
(4)120×32-800=3040(元)
(5)4÷2=2(小时)
(6)25×12=300(米)300-240=60(米)
(7)1029+8=1037(米)1037÷17=61(秒)
巅峰突破
1.300÷6=50(元)300÷(6-1)=60(元)60-50=10(元)
2.45×3=135(千米)50×3=150(千米)135+150+90=375(千米)
3.320米
解析:
如果通过隧道时速度没有提高,那么将需要50×2=100秒,所以火车原来的速度为(2180-430)÷(100-30)=25米/秒.火车的长度为25×30-430=320米。