公考数学公式.docx
《公考数学公式.docx》由会员分享,可在线阅读,更多相关《公考数学公式.docx(22页珍藏版)》请在冰豆网上搜索。
公考数学公式
公考数学公式(总11页)
准备参加2010年国家公务员考试的考生们正在进行紧张地备考。
国家公务员网特搜集整理了在数学运算中常见的数学公式汇总如下,供考生参考。
利润率=利润/成本
增长率=增长额/第一年
S1995~S2002年均增长率:
即年均增长幅度除以第一年{(S2002-S1995)/7}/S1995
利率总额=年数×年利率
平均效率=总量/总时间
在抽水问题中:
『动机效率(台数×虚拟单位效率1)-渗水率』×时间是一个恒定量。
牛吃草问题中:
『吃草效率(头数×虚拟单位效率1)-草生长率』×时间是一个恒定量。
球体积=4PIr的立方/3球表面积=4PIr的平方
锥体体积=1/3sh
等差:
An=A1+(n-1)dSn=n(A1+An)/2
等比:
An=A1•q的n-1次方Sn=A1•(1-q的n次方)/1-q
立方和公式:
a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:
a^3-b^3=(a-b)(a^2+ab+b^2)
求24、60最小公倍数:
两数最小公倍数为2×2×3×2×5
末数求值:
2343×343的最后两位即:
43×43=49
1海里=千米
用求包裹立方体的纸的大小,要求1.纸的面积大于立方体表面积2.要求纸的长宽要大于立方体的展开的边幅。
过多少天是星期几,关键看多少天能否被7整除,余几天。
9^1992除以7的余数与2^1992除以7的余数相等。
遇到图形面积题,没必要死算,积极考虑补缺移填合成规则图形。
六所学校派代表开会,选所有路程最短的学校,应重点考虑派代表最多的学校。
甲除以13余9甲=13m+9(m为正整数)
Ab与ba的差是s的4倍,则有4s=a×10+b-(b×10+a)『经常用于祖孙三代年龄问题』
多位数相加时:
abcd×dcba应用观察法,首数乘乘ad,尾数乘乘da。
3条纸带首尾相接,有2个1厘米的重合点,则比不重合相接牺牲了2厘米。
子分财产问题。
长子拿一份和剩下1/10。
次子拿两份和剩下1/10……,结果所有儿子拿的一样多。
则考虑最后两个儿子。
最后的n=倒数第二n-1+n/9
很多时候,8个以内的穷举法是最笨却最实际的办法。
P除以10余9,除以9余8,除以8余7,100至1000以内的数9×8×10=720,则P=359、719
关于中国剩余定理的应用:
一个数除以5余3,除以3余2,除以4余1。
求该数最小值。
则(5,3,4)=60。
有[53][34][54],使15或其倍数除以4余1,则该数为45,使12或其倍数除以5余1,则该数为36。
使20或其倍数除以3余1,则该数为40。
所以45×1+36×3+40×2-60×3=53
关于闰年的判定,闰年为366天,一般来说,用年份除以4,能整除就是闰年。
但是,整百年份要除以400。
比如1900年不是闰年,1600年是闰年。
300张牌,总是拿掉奇数牌。
最后剩下的是2的n次方<300,n的最大值。
总是拿掉偶数牌,最后剩下的是第一张牌。
N个人彼此握手,则总握手数
s=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2
三个圆圈相交:
S1+S2+S3=S(总数)+2×j(三块共有)+j1(两块共有)+j2(两块共有)+j3(两块共有)(记住公式必须与画图结合起来!
此公式在学生参加兴趣爱好等问题上慎用!
!
因为两个兴趣组都参加的真正人数应该是题目中给你的参加两个兴趣班人数再减去三个兴趣班都参加的人数)
英语数学语文三个小组,每人至少参加一组,总共35人,英17人,数30人,语13人,5人全参加,问只参加一组多少人设x个学生加了一组.
x+2*(35-5-x)+3*5=17+30+13x=15
对于四人篮球,五次传球后回转本人的问题,应用组合逐个计算,分类讨论再相加。
其中原始点是讨论的分歧点。
几个圆相交最多把平面分割成N^2-N+2
n条线最多能画成多少个不重叠的三角形F(n)=F(n-1)+F(n-2)如f(11)=19
边长为N的立方体由边长为1的小立方体组成,一共有N^3个小立方体,露在外面的小立方体共有N^3-(N-2)^3
边长为ABC的长方体由边长为1的小立方体组成,一共有abc个小立方体,露在外面的小立方体共有abc-(a-2)(b-2)(c-2)
已知四个连续自然数的积。
四个连续自然数为两个奇数和两个偶数,它们的和可以被2整除,但是不能被4整除。
A除以B商是5余5,A除以C商是6余6,A除以D商是7余7,则A是5、6、7的倍数
1000*999*998*……1的结果后有多少个连续的零,则为1000/5=2001000/25=40
1000/125=81000/625=则有249个零
连续4个自然数(如1、2、3、4)两奇两偶,记住:
两个奇数和的一半是偶数两个偶数和的一半是奇数。
去程速度a来程速度b,平均速度为v=2ab/(a+b)
火车.自行车同向行进,速度分别为a、b,火车超过自行车时间为t,
可知火车身长为s=(a-b)t
环形跑道周长500米,甲乙两人按顺时针沿环形跑道同时同地起跑,甲60米/分,乙50米/分,两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟?
有问题的解法:
解为乙跑的时间+乙休息的时间=甲跑的时间+甲休息的时间,设乙跑x米,甲跑了x+500米列为:
x/50+x/200=(x+500)/60+(x+500)/200
其他解法:
60x-50x=500x=50
50+50*60/200+50*50/200=77
关于含“1”的页数问题,总结出的公式就是:
总页数的1/5,再加上100。
l×l+2×2+…+n×n=n×(n+1)×(2n+1)÷6
钟表几分重合,公式为:
x/5=(x+a)/60a时钟前面的格数。
加速度公式:
S=V0T+(aT/2)TV0:
初速度aT:
末速度T:
经过的时间
剩余价值与可变资本的比例关系称为剩余价值率
利息=本金×利率×时间
记住:
现在银行利息计算采用单息制,而非利滚利的复息制,用“乘以”,而不用“乘方”
溶液配比问题的“十字交叉法”
某A溶液a克2%,某乙溶液b克4%,按如何比例可配成3%的溶液
a2%+b4%=3%(a+b)
算出a/b即可~
有很多排列组合问题可以用排除法来做。
如:
五信装封,全错种类的问题。
不建议用排列组合正面去算,很复杂。
可以用(总装法5!
)减去(全装对+装错2+装错3+装错4)。
ps.想想为什么不能装错1封信呢?
^_^
.六个数字可组成多少个不重复的数字:
先排1,有6种,再排2有5种,再排3有1种。
即有6×5×1种
公式 [拼音]gōngshì[释义]
(一)在自然科学中用数学符号表示几个量之间关系的式子。
具有普遍性,适合于同类关系的所有问题。
【例】表示矩形的面积S和它的长a、宽b之间的关系的公式为S=ab。
(二)谓通行的格式。
【例】《元典章·诏令一》:
“凡有玺书颁降并用蒙古新字……所有公式文书咸遵其旧。
”
(三)泛指可普遍应用于同类事物的方式方法。
代数:
平方差公式:
a^2-b^2=(a+b)(a-b)
完全平方公式:
(a±b)^2=a^2±2*a*b+b^2
完全立方公式:
(a±b)^3=a^3±3*a^2*b+3*a*b^2±b^3
几何:
面积计算
圆周长:
2πr(πd)面积:
r2π
勾孤定律:
两直角边的平方和等于斜边的平
(首项加末项)乘项数除以2
m,n的最小公倍数为t,,最大公约数为l
那么t*l=m*n
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
83
(1)比例的基本性质如果a:
b=c:
d,那么ad=bc 如果ad=bc,那么a:
b=c:
dwc呁/S∕
84
(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线L和⊙O相交d<r ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>R+r②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公*弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长扑愎剑篖=n兀R/180
145扇形面积公式:
S扇形=n兀R^2/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)
(还有一些,大家帮补充吧)
实用工具:
常用数学公式
公式分类公式表达式
乘法与因式分解 a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:
韦达定理
判别式 b^2-4ac=0注:
方程有两个相等的实根
b^2-4ac>0注:
方程有两个不等的实根
b^2-4ac<0注:
方程没有实根,有*轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5