PID控制原理与参数设置.docx

上传人:b****4 文档编号:11718977 上传时间:2023-03-31 格式:DOCX 页数:16 大小:292.63KB
下载 相关 举报
PID控制原理与参数设置.docx_第1页
第1页 / 共16页
PID控制原理与参数设置.docx_第2页
第2页 / 共16页
PID控制原理与参数设置.docx_第3页
第3页 / 共16页
PID控制原理与参数设置.docx_第4页
第4页 / 共16页
PID控制原理与参数设置.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

PID控制原理与参数设置.docx

《PID控制原理与参数设置.docx》由会员分享,可在线阅读,更多相关《PID控制原理与参数设置.docx(16页珍藏版)》请在冰豆网上搜索。

PID控制原理与参数设置.docx

PID控制原理与参数设置

PID控制

当今的自动控制技术都是基于反馈的概念。

反馈理论的要素包括三个部分:

测量、比较和执行。

测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。

PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。

其输入e(t)与输出u(t)的关系为

u(t)=kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt)式中积分的上下限分别是0和t

因此它的传递函数为:

G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s)

其中kp为比例系数;TI为积分时间常数;TD为微分时间常数

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ki和Kd)即可。

在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。

虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

其次,PID参数较易整定。

也就是,PID参数Kp,Ki和Kd可以根据过程的动态特性及时整定。

如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。

在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。

由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。

PID参数自整定就是为了处理PID参数整定这个问题而产生的。

现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。

在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:

如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。

闭环工作时,要求在过程中插入一个测试信号。

这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。

另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。

因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。

自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。

 

PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。

最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统

开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应

阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-stateerror)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

对于温度系统:

P(%)20--60,I(分)3--10,D(分)0.5--3

对于流量系统:

P(%)40--100,I(分)0.1--1

对于压力系统:

P(%)30--70,I(分)0.4--3

对于液位系统:

P(%)20--80,I(分)1--5

参数整定找最佳,从小到大顺序查

先是比例后积分,最后再把微分加

曲线振荡很频繁,比例度盘要放大

曲线漂浮绕大湾,比例度盘往小扳

曲线偏离回复慢,积分时间往下降

曲线波动周期长,积分时间再加长

曲线振荡频率快,先把微分降下来

动差大来波动慢。

微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低

 

常规PID参数设置指南

启动PID参数自整定程序,可自动计算PID参数,自整定成功率95%,少数自整定不成功的系统可按以下方法调PID参数。

 

P参数设置 

  如不能肯定比例调节系数P应为多少,请把P参数先设置大些(如30%),以避免开机出现超调和振荡,运行后视响应情况再逐步调小,以加强比例作用的效果,提高系统响应的快速性,以既能快速响应,又不出现超调或振荡为最佳。

 

I参数设置 

  如不能肯定积分时间参数I应为多少,请先把I参数设置大些(如1800秒),(I> 3600时,积分作用去除)系统投运后先把P参数调好,尔后再把I参数逐步往小调,观察系统响应,以系统能快速消除静差进入稳态,而不出现超调振荡为最佳。

 

D参数设置 

  如不能肯定微分时间参数D应为多少,请先把D参数设置为O,即去除微分作用,系统投运后先调好P参数和I参数,P、I确定后,再逐步增加D参数,加微分作用,以改善系统响应的快速性,以系统不出现振荡为最佳,(多数系统可不加微分作用)。

 

1. PID调节器的适用范围

PID调节控制是一个传统控制方法,它适用于温度、压力、流量、液位等几乎所有现场,不同的现场,仅仅是PID参数应设置不同,只要参数设置得当均可以达到很好的效果。

均可以达到0.1%,甚至更高的控制要求。

2. PID参数的意义和作用指标分析

P、I、D:

 y=yP+yi+ yd

2.1. P参数设置

名称:

比例带参数,单位为(%)。

比例作用定义:

比例作用控制输出的大小与误差的大小成正比,当误差占量程的百分比达到P值时,比例作用的输出=100%,这P就定义为比例带参数。

yp= ×100% = ×100% = Kp • Err 

(1) 

(其中:

yP=KP•Δ、Δ=SP-PV,取0-100%)

KP=1/(FS•P)

也可以理解成,当误差达到量程乘以P(%)时,比例作用的输出达100%。

例:

对于量程为0-1300℃的温控系统,当P设置为10%时,FS乘以P等于130℃,说明当误差达到130℃时,比例作用的输出等于100%,误差每变化1℃,比例作用输出变化0.79%,若需加大比例作用的调节能力,则需把P参数设置小些,或把量程设置小些。

具体多少可依据上述方法进行定量计算。

P=输出全开值/FS•100%

P参数越小比例作用越强,动态响应越快,消除误差的能力越强。

但实际系统是有惯性的,控制输出变化后,实际PV值变化还需等待一段时间才会缓慢变化。

由于实际系统是有惯性的,比例作用不宜太强,比例作用太强会引起系统振荡不稳定。

P参数的大小应在以上定量计算的基础上根据系统响应情况,现场调试决定,通常将P参数由大向小调,以能达到最快响应又无超调(或无大的超调)为最佳参数。

2.2. I参数设置

名称:

积分时间,单位为秒。

积分作用定义:

对某一恒定的误差进行积分,令其积分“I”秒后,其积分输出应与比例作用等同,这I就定义为积分时间。

即:

Ki∫I O Errdt = Ki • I • Err = Kp • Err (2 )

Ki = Kp /I (3 )

yi = Ki ∫t o Err (t)dt (4 )

为什么要引进积分作用呢?

前面已经分析过,比例作用的输出与误差的大小成正比,误差越大,输出越大,误差越小,输出越小,误差为零,输出为零。

由于没有误差时输出为零,因此比例调节不可能完全消除误差,不可能使被控的PV值达到给定值。

必须存在一个稳定的误差,以维持一个稳定的输出,才能使系统的PV值保持稳定。

这就是通常所说的比例作用是有差调节,是有静差的,加强比例作用只能减少静差,不能消除静差(静差:

即静态误差,也称稳态误差)。

为了消除静差必须引入积分作用,积分作用可以消除静差,以使被控的PV值最后与给定值一致。

引进积分作用的目的也就是为了消除静差,使PV值达到给定值,并保持一致。

积分作用消除静差的原理是,只要有误差存在,就对误差进行积分,使输出继续增大或减小,一直到误差为零,积分停止,输出不再变化,系统的PV值保持稳定,PV值等于SP值,达到无差调节的效果。

但由于实际系统是有惯性的,输出变化后,PV值不会马上变化,须等待一段时间才缓慢变化,因此积分的快慢必须与实际系统的惯性相匹配,惯性大、积分作用就应该弱,积分时间I就应该大些,反之而然。

如果积分作用太强,积分输出变化过快,就会引起积分过头的现象,产生积分超调和振荡。

通常I参数也是由大往小调,即积分作用由小往大调,观察系统响应以能达到快速消除误差,达到给定值,又不引起振荡为准。

3. D参数设置

名称:

微分时间,单位为秒

定义:

D是指微分作用的持续时间,是指从微分作用产生时刻起到微分作用衰减到零(接近零)所花的时间。

如下图所示。

为什么要引进微分作用呢?

前面已经分析过,不论比例调节作用,还是积分调节作用都是建立在产生误差后才进行调节以消除误差,都是事后调节,因此这种调节对稳态来说是无差的,对动态来说肯定是有差的,因为对于负载变化或给定值变化所产生的扰动,必须等待产生误差以后,然后再来慢慢调节予以消除。

但一般的控制系统,不仅对稳定控制有要求,而且对动态指标也有要求,通常都要求负载变化或给定调整等引起扰动后,恢复到稳态的速度要快,因此光有比例和积分调节作用还不能完全满足要求,必须引入微分作用。

比例作用和积分作用是事后调节(即发生误差后才进行调节),而微分作用则是事前预防控制,即一发现PV有变大或变小的趋势,马上就输出一个阻止其变化的控制信号,以防止出现过冲或超调等。

D越大,微分作用越强,D越小,微分作用越弱。

系统调试时通常把D从小往大调,具体参数由试验决定。

如:

由于给定值调整或负载扰动引起PV变化,比例作用和微分作用一定等到PV值变化后才进行调节,并且误差小时,产生的比例和积分调节作用也小,纠正误差的能力也小,误差大时,产生的比例和积分作用才增大。

因为是事后调节动态指标不会很理想。

而微分作用可以在产生误差之前一发现有产生误差的趋势就开始调节,是提前控制,所以及时性更好,可以最大限度地减少动态误差,使整体效果更好。

但微分作用只能作为比例和积分控制的一种补充,不能起主导作用,微分作用不能太强,太强也会引起系统不稳定,产生振荡,微分作用只能在P和I调好后再由小往大调,一点一点试着加上去。

4. PID综合调试

比例作用,积分作用和微分作用的关系是:

比例作用是主要调节作用,起主导作用。

积分作用是辅助调节作用;微分作用是补偿作用。

在实际调试时可按以下步骤进行。

1) 关掉积分作用和微分作用,先调P。

即令I>3600秒,D = 0秒,将P由大往小调以达到能快速响应,又不产生振荡为好。

并需结合量程进行定量估算。

2) P调好后再调I,I由大往小调,以能快速响应,消除静差,又不产生超调为好,或有少量超调也可以。

I应考虑与系统惯性时间常数相匹配。

一般I值和惯性时间差不多。

3) P、I调好后,再调D。

一般的系统D =0,1或2。

只有部分滞后较大的系统,D值才可能调大些。

4) PID参数修改后,可以少量修改给定值,观察系统的跟踪响应,以判断PID参数是否合适。

5) P值太小,I值太小或D值太大均会引起系统超调振荡。

6) 对于个别系统,如加温快降温慢,或升压快降压慢,或液位升得快降得慢等不平衡系统是很难控制的,更难兼顾动态指标,只能将P调大些,I值也调大些,牺牲动态指标来保证稳态指标。

这是由系统的不可控制特性所决定的,而与PID调节器的性能无关。

PID菜单内各数值具体调整

PID参数的选取:

如果选用的PID参数不合适,PID调节的结果很可能比二位式调节的结果还差,例如产生幅度很大的连续振荡,产生长时期不能消除的静差,或者是在系统受扰动后不能尽快复原等等,因此,根据被控对象的工况选取合适的PID参数,是用好PID调节仪表的关键。

 

在大多数场合,选择P=5%、I=210秒、D=30秒,就能达到较理想的调节效果。

但对惰性特别大或加热功率特别不匹配的系统,就必须另行选取相应的参数。

一、 PID参数人工整定方法

PID参数的设置情况直接影响系统的调节结果。

人工整定PID参数,最简单实用的方法就是使用“邻界比例法”来确定PID的参数。

具体方法是:

将系统接成闭环,关掉I、D(即将参数积分时间I和微分时间D均设置为0),多次调节比例带P值的大小,使系统刚刚产生振荡,记录此时的比例带参数(XP1)及振荡周期时间(T),则正确的PID参数可以从下表中计算出来(以恒温调节系统为例说明):

最终控制方式 比例带 积分时间 微分时间

纯比例控制 2 × XP1 

P、I控制 2.2 × XP1 0.8 × T 

P、I、D控制 1.67 × XP1 0.5 × T 0.12 × T

根据比例带XP1和振荡周期T,查上表后计算出合适的比例带、积分时间、微分时间三个参数的具体数值,再按仪表的设置步骤键入PID参数并稍作微调即可。

概括地说,比例带P设置的数值越大,系统越不会发生振荡,静差也越大;积分时间I设置的数值越大,积分的作用越不明显,消除静差所需的时间也越长,系统越不会发生振荡;微分时间D设置的数值越小,对比例带和积分的作用力越小,系统越不会发生振荡,但系统的响应速度也变得迟钝。

积分的作用是使系统趋向稳定,而微分的作用是抑制超调,但会使系统趋向不稳定,微分与积分配合得当,就可获得尽快而稳定的调节过程。

一般建议:

初次运行先以仪表出厂时已经设置的PID参数为基础,如发现系统一直在设定值上下产生非衰减性的振荡,可逐次把比例带P或积分时间I的数值增大三分之一左右,直至稳定。

反之,如发现系统的静差消除过慢,可减小比例带P的数值或积分时间I的数值,直至稳定。

如发现系统抗扰动的能力不够,可适当增强微分作用,即适当加大微分时间。

在一些工况固定的场合,只选用仪表的比例P和积分I功能,而把微分D功能关掉(设置为0),反而能取得理想的调节效果。

二、 自适应调节方式

该调节方式的基本原理是根据受控对象的实际升温速率、仪表的标称量程与设定值之间的比例、包括传感器响应速度及系统滞后特性等在内的系统综合工况,由仪表内部的计算机预算出加热功率的匹配状况,自动对加热功率的大小进行约束,并给出一个适宜的调节参数进行自动调节,并在调节过程中不断优化。

其最大特点是对使用者的素质要求不高,易学好用,适用的对象范围也较宽,通常情况下调节品质也较好。

但自适应调节方式也存在着局限性,在某些被控对象变化特慢或扰动特大的系统中,可能得不到理想的效果。

故在十分专业或调节品质要求十分高的超高精度场合应用较少。

总之,PID调节方式是多参数共同作用的高级调节方式,整定好后,仪表内部计算机就会把参数记存,只要工况不变,以后开机就不必再次整定。

而自整定仪表,整定期间如有干扰发生,就将会给出错误的整定参数,二者各有优缺点。

三、 前馈加法整定步骤

①、首先将P、I、D 参数整定好,将前馈系数设为0.00,前馈偏值设为0.0将附屏设为In2。

②、系统投运在正常额定负载下,系统工作稳定后,读出附屏前馈输入值,计算出此时前馈量百分比值FFS。

③、假设前馈输入扰动为15%(在实际工况下,前馈输入扰动=最大负荷-最小负荷),前馈加法作用为30%(此值越大,前馈加法作用越强)。

 这两参数根据现场情况不同而不同,前馈主是起辅助作用。

④、 前馈系数FFS.K=30%/15%=2.00,前馈偏值FFS.B=-FFS.K*FFS=-2*FFS。

例如:

 在锅炉的汽泡水位控制时,常把蒸汽流量作为前馈量引入进行超前调节。

此时便可将IN2作为前馈输入。

假设输入4~20mA,量程下限设为0,量程上限设为100.0。

蒸汽流量前馈加法作用的参数计算举例:

 

①、系统投运在正常额定负载下,系统工作稳定后,读出附屏前馈输入值,假设为75.0,计算出此时前馈量百分比值FFS=75.0/(100.0-0)=75%=0.75。

②、前馈输入扰动量的计算:

假设此系统的最大蒸汽流量为85.0 t/h, 最小蒸汽流量为70.0 t/h,则前馈输入扰动=(最大蒸汽流量-最小蒸汽流量)/(量程满度-量程零点)=(85.0-70.0)/(100.0-0)=15%。

③、前馈加法作用的计算:

前馈加法作用的值越大,前馈蒸汽流量对给水流量的影响越大。

在实际调试中,应从小到大多试几个值。

假设此时的前馈加法作用为30%。

则前馈系数FFS.K =前馈加法作用/前馈输入扰动=30%/15%=2.0;

前馈偏值FFS.B = -(前馈系数*正常额定负载下前馈量百分比值)= -(FFS.K*FFS) = -(2.0*0.75)= -1.50。

④、则在控制参数菜单中,将PID的前馈系数FFS.K设置为2.0,前馈偏值FFS.B设为-1.50。

(在实际调试中,前馈系数FFS.K的值越大,对输出的影响越大;前馈偏值FFS.B的值,若没有经过以

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1