像差综述.docx

上传人:b****5 文档编号:11576081 上传时间:2023-03-19 格式:DOCX 页数:12 大小:463.85KB
下载 相关 举报
像差综述.docx_第1页
第1页 / 共12页
像差综述.docx_第2页
第2页 / 共12页
像差综述.docx_第3页
第3页 / 共12页
像差综述.docx_第4页
第4页 / 共12页
像差综述.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

像差综述.docx

《像差综述.docx》由会员分享,可在线阅读,更多相关《像差综述.docx(12页珍藏版)》请在冰豆网上搜索。

像差综述.docx

像差综述

[像差专题]球差、彗差、像散、场曲、畸变以及色差

概念 

1。

球差:

由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系列折射后,若原光束不同孔径角的各光线,不能交于主轴上的同一位置,以至在主轴上的理想像平面处,形成一弥散光斑(俗称模糊圈),则此光学系统的成像误差称为球差。

2。

慧差:

由位于主轴外的某一轴外物点,向光学系统发出的单色圆锥形光束,经该光学系列折射后,若在理想像平面处不能结成清晰点,而是结成拖着明亮尾巴的慧星形光斑,则此光学系统的成像误差称为慧差。

3。

像散:

由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑,则此光学系统的成像误差称为像散。

4。

场曲:

垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。

5。

畸变:

被摄物平面内的主轴外直线,经光学系统成像后变为曲线,则此光学系统的成像误差称为畸变。

6。

色差:

由白色物点向光学系统发出一束白光,经该光学系列折射后,组成该束白光的红、橙、黄、绿、青、蓝、紫等各色光,不能会聚于同一点,即白色物点不能结成白色像点,而结成一彩色像斑的成像误差,称为色差。

球差、慧差所引起的成像模糊现象称为光晕。

像散:

由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑。

当前后移动像平面至某一位置(弧矢像面)时,弥散光斑变成垂直于光学系统弧矢面的短线s。

当前后移动像平面至另一位置(子午像面)时,弥散光斑又变成垂直于光学系统子午面的短线t。

在子午像面和弧矢像面之间可以找到一弥散光斑最小的成像平面,而在其余位置只能得到一介椭圆形弥散光斑,则此光学系统的成像误差称为像散。

像散的大小由子午焦线t与弧矢焦线s之间的距离表示。

说明:

1。

子午像面:

轴外物点的主光线与光学系统主轴所构成的平面,称为光学系统成像的子午面。

位于子午面内的那部分光线,统称为子午光束。

子午光束所结成的影像,称为子午像点t。

子午像点所在的像平面,称为子午像面。

2。

弧矢像面:

过轴外物点的主光线,并与子午面垂直的平面,称为光学系统成像的弧矢面。

位于弧矢面内的那部分光线,统称为弧矢光束。

弧矢光束所结成的影像,称为弧矢像点s。

弧矢像点所在的像平面,称为弧矢像面。

场曲:

当调焦至画面中央处的影像清晰时,画面四周的影像模糊;而当调焦至画面四周处的影像清晰时,画面中央处的影像又开始模糊。

畸变像差只影响影像的几何形状,而不影响影像的清晰度。

这是畸变与球差、慧差、像散、场曲之间的根本区别。

色差:

[像差专题]像差及其和结构参数的关系

通过本主题希望对朋友们针对存在特定像差的优化有所帮助。

单色像差 对单色光而言的像差。

按照理想像平面上像差的大小与物高、入射光瞳口径的关系可区分为:

  ①球差 与物高无关而与入射光瞳口径三次方成正比的像差。

它使理想像平面中各像点都成为同样大小的圆斑。

轴上物点只有球差这一种像差。

通过入射光瞳上不同环带的光线,经过光学系统后会聚在光轴上的不同点。

这些点与近轴光的像点之差称为轴向球差。

  ②彗差 与物高一次方、入射光瞳口径二次方成正比的像差。

若仅存在彗差,轴外物点发出的通过入射光瞳不同环带的光线,会在理想像平面上形成半径变化的并且沿视场半径方向偏移的像圈。

它们的组合会使物点的像成为形状同彗星相似的弥散斑。

  ③场曲和像散 与物高二次方、入射光瞳口径一次方成正比的像差。

若仅存在场曲,则所有物平面上的点都有相应的像点,但分布在一个球面上;若采用弯成此种形状的底片,则可获得处处清晰的像。

此时在理想像平面上,像点呈现为圆斑。

  ④畸变 仅与物高三次方成正比的像差。

若仅有畸变,得到的像是清晰的,只是像的形状与物不相似。

  上述单色像差,仅与物高和入射光瞳口径的幂总共三次方成正比,称为三级像差(又称初级像差),此外还有与物高和入射光瞳口径的幂总共高于三次方的成正比像差,称为高级像差。

色差 由于透射材料折射率随波长变化,造成物点发出的不同波长的光线通过光学系统后不会聚在一点,而成为有色的弥散斑。

它仅出现于有透射元件的光学系统中。

按照理想像平面上像差的线大小与物高的关系,可区分为:

  ①位置色差(又称纵向色差) 与物高无关的像差,即不同波长的光线经由光学系统后会聚在不同的焦点。

  ②横向色差(又称倍率色差) 与物高一次方成正比的像差。

它使不同波长光线的像高不同,在理想像平面上物点的像成为一条小光谱。

  这是两种最基本的色差,由于波长不同还会引起单色像差的不同,这称为色像差,如色球差、色彗差等。

如果物平面处在无穷远,上述物高应换为物点的视角(即它和光轴的夹角)。

实际的光学系统存在着各种像差。

一个物点所成的像是综合各种像差的结果;此外实际光学系统完全可以不调焦在理想像平面处,这时像差(指在这个实像面上的像斑)当然也要变化。

在天文上常用光线追迹的点列图来表示实际像差;也可用波像差来表示像差,由一个物点发出的光波是球面波,经过光学系统后,波面一般就不再是球面的。

它与某一个基准点为中心的球面的偏离量,乘以该处介质的折射率值,称为波像差。

[像差专题]初级像差深入

1,近轴光线和远轴光线的概念。

近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)。

缩小的光圈可以拦去远轴光线,而由近轴光线来成像。

总的来说,镜头的像差可以分成两大类,即单色像差及色差。

镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变。

以下就分别介绍五种不同性质的单色像差。

球差是由于镜头的透镜球面上各点的聚光能力不同而引起的。

从无穷远处来的平行光线在理论上应该会聚在焦点上。

但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。

球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。

小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。

大光圈时弥散圆直径就大,图像就会比较模糊。

必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。

球差可以通过复合透镜或者非球面镜等办法在最大限度下消除的。

在照相镜头中,光圈数增加一档(光孔缩小一档),球差就缩小一半。

我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈来减小球差的影响。

彗差是在轴外成像时产生的一种像差。

从光轴外的某一点向镜头发出一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。

这种轴外光束引起的像差就称为彗差。

彗差的大小既与光圈有关,也与视场有关。

我们在拍摄时也可以采取适当采用较小的光圈来减少彗差对成象的影响。

像散也是一种轴外像差。

与彗差不同,像散仅仅与视场有关。

由于轴外光束的不对称性,使得轴外点的子午细光束(即镜头的直径方向)的会聚点与弧矢细光束(镜头的园弧方向)的会聚点位置不同,这种现象称为象散。

像散可以对照眼睛的散光来理解。

带有散光的眼睛,实际上是在两个方向上的晶状体曲率不一致,造成看到的点弥散成了一条短线。

象散也使得轴外成像的像质大大地下降。

像散的大小只与视场角有关,与孔径是没有关系的。

即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。

在广角镜头中,由于视场角比较大,像散现象就比较明显。

我们在拍摄的时候应该尽量使被摄体处于画面的中心。

这好象与构图要求不把主要表现对象放在图面正中央有些冲突,如何掌握就要看实际情况了。

当拍摄垂直于光轴的平面上的物时,经过镜头所成的像并不在一个像平面内,而是在以光轴为对称的一个弯曲表面上,这种成像的缺陷就是场曲。

场曲是一种与孔径无关的像差。

靠减小光圈并不能改善因场曲带来的模糊。

用存在场曲的镜头拍照时,当调焦至画面中央处影象清晰,画面四周影象就模糊;而当调焦至画面四周影象清晰时,画面中央处的影象又开始模糊,无法在平直的象平面上获得中心与四周都清晰的象。

因此在某些专用照相机中,故意将底片处于弧形位置,以减少场曲的影响。

由于广角镜头的场曲比一般镜头大,在拍团体照(经常使用广角镜头)时采用略带圆弧形的站位排列,就是为了提高边缘视场的象质。

畸变是指物所成的像在形状上的变形。

畸变并不会影响像的清晰度,而只影响像与物的相似性。

由于畸变的存在,物方的一条直线在像方就变成了一条曲线,造成像的失真。

畸变可分为枕型畸变和桶型畸变两种。

造成畸变的根本原因是镜头像场中央区的横向放大率与边缘区的横向放大率不一致。

如下图所示,如果边缘放大率大于中央放大率就产生枕型畸变,反之,则产生桶型畸变。

畸变与镜头的光圈F数大小无关,只与镜头的视场有关。

因此,广角镜头的畸变一般都大于标准镜头或长焦镜头。

无论是哪一种镜头,哪一种畸变,缩小光圈并都不能改善畸变。

特别要注意镜头的畸变像差与透视畸变的并不是一会事。

镜头的畸变是镜头成像造成的,在设计镜头时可以采取各种手段(如非球面镜)来减小畸变。

透视畸变是由视点、视角、镜头指向(俯仰)等因素决定的,这是透视的规律。

无论是何种镜头,如果视点相同,视角相同,镜头指向相同的话,产生的透视畸变是相同的。

下图中左边是枕型畸变(属镜头畸变),右边是广角畸变(属透视畸变),大家可以看出两者之间的区别。

镜头畸变一般是很小的,图中的畸变是我PS出来的。

如果拍照片有这样大的畸变,相机就应该丢到垃圾桶里去了。

最后再说一说色差。

由于我们拍摄的景物基本上都是彩色的(除了翻拍黑白文件稿等少数情况),可镜头的成像是白光成像。

我们知道白光是由各种不同波长的单色光组成的。

而介质的的折射率是与波长有关的,因此成像时不同波长的光线会有差异,使得物上的点成像后产生色彩的分离,这种现象就称为色差。

色差可以分为位置色差和倍率色差两种。

前者是由于不同波长的光线会聚点不同而产生彩色弥散现象,后者是由于镜头对不同波长的光的放大率不同而引起的。

一般的镜头设计都进行了消色差计算。

但是,要完全消除色差是不可能的。

根据镜头的档次,价格不同,消色差可以对二种波长、三种波长或四种波长的光线进行计算。

比如,对四种波长进行的超复消色差镜头的价格就是非常高的了。

CANON公司还把菲涅尔透镜技术应用到镜头的消色差中去,这里就不展开了。

如有机会,我们将在其他文章中继续讨论。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 哲学历史

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1