最新数学选修23知识点总结.docx

上传人:b****1 文档编号:1150491 上传时间:2022-10-18 格式:DOCX 页数:12 大小:295.69KB
下载 相关 举报
最新数学选修23知识点总结.docx_第1页
第1页 / 共12页
最新数学选修23知识点总结.docx_第2页
第2页 / 共12页
最新数学选修23知识点总结.docx_第3页
第3页 / 共12页
最新数学选修23知识点总结.docx_第4页
第4页 / 共12页
最新数学选修23知识点总结.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

最新数学选修23知识点总结.docx

《最新数学选修23知识点总结.docx》由会员分享,可在线阅读,更多相关《最新数学选修23知识点总结.docx(12页珍藏版)》请在冰豆网上搜索。

最新数学选修23知识点总结.docx

最新数学选修23知识点总结

第二章概率总结

1、知识结构

 

2、知识点

1.随机试验的特点:

①试验可以在相同的情形下重复进行;

②试验的所有可能结果是明确可知的,并且不止一个

③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.

2.分类

随机变量

(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。

离散型随机变量

在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.

连续型随机变量

对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.

 

3.离散型随机变量的分布列

一般的,设离散型随机变量X可能取的值为

x1,x2,,xi,,xn

X取每一个值xi(i=1,2,  )的概率

P(ξ=xi)=Pi,则称表

为离散型随机变量X的概率分布,简称分布列

性质:

①pi≥0,i=1,2,… ;

②p1+p2+…+pn=1.

③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤

例题:

篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.

解:

用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:

1,0

且P(X=1)=0.7,P(X=0)=0.3

因此所求分布列为:

引出

 

超几何分布

一般地,设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(n≤N)件,这n件中所含这类物品件数X是一个离散型随机变量,

则它取值为k时的概率为,其中,

则称随机变量X的分布列

为超几何分布列,且称随机变量X服从参数N、M、n的超几何分布

注意:

(1)超几何分布的模型是不放回抽样;

(2)超几何分布中的参数是N、M、n,其意义分别是总体中的个体总数、N中一类的总数、样本容量

解题步骤:

例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率

解:

设摸出红球的个数为X,则X服从超几何分布,其中

X可能的取值为0,1,2,3,4,5.

由题目可知,至少摸到3个红球的概率为≈0.191

 

答:

中奖概率为0.191.

 

 

条件概率

1.定义:

对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率

2.事件的交(积):

由事件A和事件B同时发生所构成的事件D,称为事件A与事件B的交(或积).记作D=A∩B或D=AB

3.条件概率计算公式:

 

P(B|A)相当于把A看作新的基本事件空间,求A∩B发生的概率:

 

 

 

解题步骤:

例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.

解:

设A={第一个取到次品},

B={第二个取到次品},

 

所以,P(B|A)=P(AB)/P(A)=2/9

答:

第二个又取到次品的概率为2/9.

 

相互独立事件

1.定义:

事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件

说明

(1)判断两事件A、B是否为相互独立事件,关键是看A(或B)发生与否对B(或A)发生的概率是否影响,若两种状况下概率不变,则为相互独立.

(2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.

(3)如果A、B是相互独立事件,则A的补集与B的补集、A与B的补集、A的补集与B也都相互独立.

 

2.相互独立事件同时发生的概率公式

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

则有

 

如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,

等于每个事件发生的概率的积。

即:

P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)

3.两事件是否互为独立事件的判断与证明

4.解题步骤

例题、一袋中有2个白球,2个黑球,做一次不放回抽样试验,从袋中连取2个球,观察球的颜色情况,记“第一个取出的是白球”为事件A,“第二个取出的是白球”为事件B,试问A与B是不是相互独立事件?

答:

不是,因为件A发生时(即第一个取到白球),事件B的概率P(B)=1/3,而当事件A不发生时(即第一个取到的是黑球),事件B发生的概率P(B)=2/3,也就是说,事件A发生与否影响到事件B发生的概率,所以A与B不是相互独立事件。

证明:

由题可知,

P(B|A)=1/3,

P(B|A的补集)=2/3

因为P(B|A)≠P(B|A的补集)

所以A与B不是相互独立事件

 

独立重复试验

1.定义:

在同等条件下进行的,各次之间相互独立的一种试验

2.说明:

①这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的

②每次试验是在同样条件下进行;

③每次试验间又是相互独立的,互不影响.

前提

二项分布

1.引入:

一般地,如果在1次实验中某事件A发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是

P()

Pn(k)是[(1-P)+P]n的通项公式,所以也把上式叫做二项分布公式.

2.二项分布定义:

设在n次独立重复试验中某个事件A发生的次数,A发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中

(其中k=0,1,,n,q=1-p)

于是可得随机变量ξ的概率分布如下:

由于恰好是二项展开式

中的第k+1项,所以,称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,

并记:

 

3.解题步骤

例题、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.

解:

依题意,随机变量ξ~B(2,5%).

∴P(ξ=0)=(95%)2=0.9025,

P(ξ=1)=(5%)(95%)=0.095,

P(ξ=2)=(5%)2=0.0025.

因此,次品数ξ的概率分布是

 

几何分布

1.定义:

在独立重复试验中,某事件A第一次发生时所作的试验次数ξ也是一个取值为正整数的随机变量。

“ξ=k”表示在第k次独立重复试验时事件A第一次发生。

如果把第k次实验时事件A发生记为Ak,p(Ak)=p,事件A不发生记为,P()=q(q=1-p),那么

(k=0,1,2…,q=1-p.)

于是得到随机变量ξ的概率分布如下:

 

称ξ服从几何分布,并记g(k,p)=p·qk-1

 

离散型随机变量的期望和方差

一般地,若离散型随机变量ξ的概率分布为

则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量

说明:

(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平

(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn,则有p1=p2=…=pn=,Eξ=(x1+x2+…+xn),所以ξ的数学期望又称为平均数、均值

(3)随机变量的数学期望与样本的平均值的关系:

前者是常数,不依赖样本抽取;后者是一个随机变量.

Dξ=(x1-Eξ)2·P1+(x2-Eξ)2·P2+…+(xn-Eξ)2·Pn+…

叫随机变量ξ的均方差,简称方差。

说明:

①、Dξ的算术平方根√Dξ——随机变量ξ的标准差,记作σξ;

②、标准差与随机变量的单位相同;

③、随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。

集中分布的期望与方差一览

期望

方差

两点分布

Eξ=p

Dξ=pq,q=1-p

超几何分布

D(X)=np(1-p)*(N-n)/(N-1)

不要求

二项分布

ξ~B(n,p)

Eξ=np

Dξ=qEξ=npq,q=1-p

几何分布

p(ξ=k)=g(k,p)

1/p

 

正态分布连续型随机变量

若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为概率密度曲线.

 

5、就业机会和问题分析

月生活费人数(频率)百分比

在现代文化影响下,当今大学生对新鲜事物是最为敏感的群体,他们最渴望为社会主流承认又最喜欢标新立异,他们追随时尚,同时也在制造时尚。

“DIY自制饰品”已成为一种时尚的生活方式和态度。

在“DIY自制饰品”过程中实现自己的个性化追求,这在年轻的学生一代中尤为突出。

“DIY自制饰品”的形式多种多样,对于动手能力强的学生来说更受欢迎。

 

大学生对手工艺制作兴趣的调研

“碧芝”最吸引人的是那些小巧的珠子、亮片等,都是平日里不常见的。

据店长梁小姐介绍,店内的饰珠有威尼斯印第安的玻璃珠、秘鲁的陶珠、奥地利的施华洛世奇水晶、法国的仿金片、日本的梦幻珠等,五彩缤纷,流光异彩。

按照饰珠的质地可分为玻璃、骨质、角质、陶制、水晶、仿金、木制等种类,其造型更是千姿百态:

珠型、圆柱型、动物造型、多边形、图腾形象等,美不胜收。

全部都是进口的,从几毛钱一个到几十元一个的珠子,做一个成品饰物大约需要几十元,当然,还要决定于你的心意尽管售价不菲,却仍没挡住喜欢它的人。

 

价格便宜些□服务热情周到□店面装饰有个性□商品新颖多样□

据调查,大学生对此类消费的态度是:

手工艺制品消费比“负债”消费更得人心。

 

除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。

产品尺寸(mm)

概率密度曲线的形状特征:

中间高,两头低

正态分布

若概率密度曲线就是或近似地是函数

标题:

上海发出通知为大学生就业—鼓励自主创业,灵活就业2004年3月17日的图像,

其中解析式中的实数、是参数,分别表示总体的平均数与标准差.

则其分布叫正态分布,记作

f(x)的图象称为正态曲线

 

=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1