A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx

上传人:b****8 文档编号:11405011 上传时间:2023-02-28 格式:DOCX 页数:25 大小:89.46KB
下载 相关 举报
A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx_第1页
第1页 / 共25页
A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx_第2页
第2页 / 共25页
A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx_第3页
第3页 / 共25页
A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx_第4页
第4页 / 共25页
A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx

《A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx》由会员分享,可在线阅读,更多相关《A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx(25页珍藏版)》请在冰豆网上搜索。

A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts.docx

Anewapproachtothemodelingofdeactivationintheconversionofmethanolonzeolitecatalysts

Copyright©2009ElsevierLtdAllrightsreserved.

Anewapproachtothemodelingofdeactivationintheconversionofmethanolonzeolitecatalysts

TonV.W.Janssens

a,

aHaldorTopsøeA/S,Nymøllevej55,DK-2800Lyngby,Denmark

Received8January2009; 

revised18February2009; 

accepted8March2009. 

Availableonline1May2009.

Abstract

Thedeactivationofazeolitecatalystintheconversionofmethanoltohydrocarbonsisdescribedasareductionoftheeffectiveamountofcatalystwithtimeonstream.Withtheassumptionsthattheconversionofmethanolisafirst-orderreaction,andthatthelossofactivecatalystisproportionaltotheconversion,anexpressionfortheconversionwithtimeonstreamisobtained,whichdescribestheexperimentaldatawell.Thisexpressioncontainstherateconstant,thatcharacterizestheactivity,andadeactivationcoefficientthatdescribesthedeactivationbehaviorasparameters.Itisshownthatactivecatalystsshowamoresuddendecreaseinconversion,andthatthedeactivationratedeterminesthetimeatwhichthedecreaseinconversionisobserved.Iftheinitialconversioniscloseto100%,thelifetimeto50%conversiondoesnotdependontheactivity,andthedeactivationcoefficientisdirectlyderivedfromtheexperimentaldata,bydividingthemeasuredlifetimeto50%conversionbytheappliedcontacttime.Thelifetimetoallotherconversionlevelsisdependentonbothdeactivationandactivity,whichimpliesthatacatalystlifetimetobreakthroughofmethanoldoesnotscalewiththedeactivationrate.Likewise,itisshownthattheconversioncapacityisagoodcharacterizationofthedeactivation,andthiscanbereadilycalculatedastheproductofthespacevelocityofmethanol(WHSV)andthelifetimeto50%conversion.Theamountofconvertedmethanolatotherconversionlevelsdependsonthedeactivation,theactivity,andappliedcontacttime(spacevelocity),andisthereforelessappropriatetouseasacharacterizationofthedeactivationbehavior.

Graphicalabstract

Thelifetimeto50%conversionisentirelydeterminedbythedeactivationproperties;differencesintheslopeofthedecayreflectdifferentcatalyticactivity.

Full-sizeimage(17K)

High-qualityimage(120K)

Keywords:

Conversionofmethanoltohydrocarbons;Zeolite;Methanoltogasoline;ZSM-5;Deactivation;Kineticmodel;Catalystlifetime;Conversioncapacity

ArticleOutline

1.Introduction

2.Experimental

3.Thedeactivationmodel

4.Discussion

4.1.Catalystlifetime

4.2.Methanolconversioncapacity

4.3.Finalremarks

5.Conclusions

References

1.Introduction

Themethanoltogasoline(MTG)reactionistheconversionofmethanoloverazeolite-basedcatalysttolightolefins(C2–C4)andliquidproductsintheboilingpointrangeofgasoline,whichtypicallyoccursinthetemperaturerangeof300–400 °C.IntheTIGAS(TopsøeIntegratedGASoline)process,theMTGreactioniscombinedwiththemethanolsynthesis,andinthiswayanefficientprocessconvertingsynthesisgastogasolineisobtained[1]and[2].

TheMTGreactioncanberegardedasasequentialreaction,consistingofthefollowingsteps[3]:

Methanol

DME→lightolefins→gasolineproducts

andthisisknowntooccuronavarietyofzeolites[4].TheZSM-5zeolite,however,isthemostcommonlyappliedone,sinceitappearstobesuperiorforthisreaction.TheMTGreactionoveraZSM-5-basedcatalystis,likemanyotherhydrocarbonreactionsoverzeolitecatalysts,alwaysaccompaniedbycokeformation,whichleadstodeactivationofthecatalyst.Thedeactivationbycokeformationoccursthroughblockingtheaccesstotheactiveacidsites,eitherbydepositionofcarbonaceouscompoundsdirectlyontheacidsitesitselfandinthemicroporechannelsofthezeolite(internalcoke),orbyblockingtheentrancetothemicropores,therebypreventingthediffusionofmethanolmoleculesintothezeolitestructure(externalcoke)[5],[6],[7],[8],[9],[10]and[11].Lossofactivityduetothecokeformationis,inprinciple,reversible,andthecatalyticactivitycanberestoredbyaregenerationthatremovesthedepositedcoke.Acommonprocedureistoburnoffthecokewithoxygenat500–600 °C[7],[8],[12]and[13].Regeneratedcatalystsoftenshowasomewhatloweractivitythanfreshones,possiblyduetodealuminationofthezeolite,whichtypicallyoccursatelevatedtemperatures(>500 °C)inthepresenceofwater.

Asaconsequenceofthedeactivation,thetotalamountofmethanolthatcanbeconvertedoveraZSM-5catalystislimited,anditisthereforeimportanttoknowthedeactivationbehaviorofthecatalyst.Tocharacterizecatalystdeactivation,itisrequiredtodescribehowthecatalyticactivitydecreasesduringthecatalystlifetime.Differentapproachesforsuchadescriptionhavebeendeveloped.Theapproachoftenencounteredintheliteratureisbasedonadescriptionofcarbonformationasafunctionofcontacttime,e.g.bytheempiricalVoorhiesequation[11],[14]and[15].Thecatalystactivityisthenrelatedtothecarboncontentinthecatalyst,using(semi-)empiricalrelations,resultinginthedescriptionoftheactivityasafunctionoftime[15],[16],[17],[18]and[19].Thepercolationmodeldescribesthecokeformationinthezeolitechannelsandtheaccessibilityoftheactivesitesinmoredetail,fromwhichthentheactivityisderived[20],[21],[22]and[23].Clearly,intheseapproaches,catalystdeactivationisdirectlyrelatedtotheformationofcoke,anddeactivationbydealuminationisnotincludedassuch.Theadvantageofthesemodelsisthatthecatalystdeactivationisrelatedtothechemistryofcarbonformationinthezeolitechannels,whichishelpfulinthedesignofzeolitestructureswithastableactivityforMTG.

Anotherapproachistodescribethechangeincatalyticactivitywithtime,andincorporatethisinakineticmodel.Thisyieldsaphenomenologicaldescription,andisindependentofthecauseofdeactivation.Usually,theactivationisdefinedbytheratiooftherateexpressionafteragiventimeonstreamandthatforthefreshcatalyst,whichresultsessentiallyinatime-dependentrateconstant[24].Thedeactivationoftendependsonparameters,suchasconversion,currentactivity,orcertainproductconcentrations,andistypicallydescribedbysimilarexpressionsasareactionrate,basedonrateconstantandanactivationenergyfordeactivation.Thedeactivationisthencharacterizedbyoneormorerateconstantsandactivationenergies[25],[26],[27],[28]and[29].

Inthisarticle,itwillbeshownthatcatalystdeactivationinMTGalsocanbedescribedasalossoftheeffectiveamountofactivecatalystinthereactorduringcatalystoperation,insteadofadecreaseintherateconstant,alsoresultinginaphenomenologicaldescriptionofthedeactivation.Therateatwhichtheeffectiveamountofactivecatalystdecreasesisthenadirectmeasureforthecatalystdeactivation.Thisapproachissimilartotheconceptofaneffectivespacevelocity,whichwasproposedpreviouslybyDahlandKolboe[30]and[31]andSapre[32],asareducedamountofactivecatalystresultsinaneffectivelylowercontacttimeorhigherspacevelocity.

Tomeasurethecatalystdeactivationexperimentally,theconversionwithtimeonstreamisfollowedunderconstantprocessconditions.Thedeactivationrateisthenderivedfromamodelthatdescribestheobserveddecreaseinconversionintermsofalossofactivecatalyst.Inthisarticle,experimentaldataforafewselectedZSM-5zeolites,showingdifferentdeactivationbehavior,arepresented.Thedeactivationratesdeterminedinthiswaycan,inprinciple,beusedforfurtherstudyoftheinfluenceofcatalystproperties,e.g.acidity,particlesize,orofprocessconditions,e.g.temperature,pressure,feedcomposition,onthecatalystdeactivation.Thescopeofthepresentarticle,however,isconfinedtothederivationofadeactivationmodel,andtheproceduresthatcanbeusedtoextractinformationonthedeactivationbehaviorfromtheexperimentaldata,withtheaimtodevelopamethodforthecharacterizationofcatalystdeactivation.

Themodelthatisderivedhereisbasedontheassumptionsthattheconversionofmethanolisafirst-orderreaction,andthatthedeactivationrateisproportionaltothetotalconversionofmethanolandDME.Therateconstantandthedeactivationrateappearastheparameterstobedetermined.Sincethedeactivationisregardedasareductionoftheamountofactivecatalyst,orofthenumberactivesites,ratherthanareductionoftheintrinsicactivityofanactivesite,therateconstantdoesnotchangewithtimeinthemodel.Althoughthisseemstobeaseveresimplification,itturnsoutthatitdescribestheobservedconversionofmethanolwithtimeonstreamwell,and,inaddition,asurprisinglyeasymethodtoextractthedeactivationratefromtheexperimentaldataisfound.Theexperimentallydetermineddeactivationratesandrateconstantsareusedtocalculatethecatalystlifetimeandtheconversioncapacity.Themodelgivesaclearinsightonhowthecatalyticactivity,thespacevelocity,andthedeactivationbehavioraffectthemeasuredconversions,thecatalystlifetime,andtheconversioncapacityofthecatalyst.

2.Experimental

Tomeasurethedeactivation,thetotalconversionofmethanoltohydrocarbons,i.e.thehydrocarbonyieldcalculatedonaC-atombasis,ismeasuredasafunctionoftime.ThoughitdoesnotincludetheconversionofmethanoltoDME,thisisreferredtoas“conversion”throughoutthispaper;methanolandDMEareassumedtobeinequilibriumandtreat

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1