模具浇注系统设计.docx

上传人:b****7 文档编号:11379530 上传时间:2023-02-28 格式:DOCX 页数:21 大小:1.77MB
下载 相关 举报
模具浇注系统设计.docx_第1页
第1页 / 共21页
模具浇注系统设计.docx_第2页
第2页 / 共21页
模具浇注系统设计.docx_第3页
第3页 / 共21页
模具浇注系统设计.docx_第4页
第4页 / 共21页
模具浇注系统设计.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

模具浇注系统设计.docx

《模具浇注系统设计.docx》由会员分享,可在线阅读,更多相关《模具浇注系统设计.docx(21页珍藏版)》请在冰豆网上搜索。

模具浇注系统设计.docx

模具浇注系统设计

浇注系统设计

9.1

浇注系统设计原则

9.1.1浇注系统的组成

模具的浇注系统是指模具中从注塑机喷嘴开始到型腔入口为止的流动动通道,它可分为普通流道浇注系统和无流道浇注系统两大类型。

普通流道浇注系统包括主流道、分流道、冷料井和浇口组成。

如图9-1所示。

9.1.2浇注系统设计时应遵循如下原则:

1.结合型腔的排位,应注意以下三点:

a.尽可能采用平衡式布置,以便熔融塑料能平衡地充填各型腔;

b.型腔的布置和浇口的开设部位尽可能使模具在注塑过程中受力均匀;

c.型腔的排列尽可能紧凑,减小模具外形尺寸。

2.热量损失和压力损失要小

a.选择恰当的流道截面;

b.确定合理的流道尺寸;

在一定范围内,适当采用较大尺寸的流道系统,有助于降低流动阻力。

但流道系统上的压力降较小的情况下,优先采用较小的尺寸,一方面可减小流道系统的用料,另一方面缩短冷却时间。

c.尽量减少弯折,表面粗糙度要低。

3.浇注系统应能捕集温度较低的冷料,防止其进入型腔,影响塑件质量;

4.浇注系统应能顺利地引导熔融塑料充满型腔各个角落,使型腔内气体能顺利排出;

5.防止制品出现缺陷;避免出现充填不足、缩痕、飞边、熔接痕位置不理想、残余应力、翘曲变形、收缩不匀等缺陷。

6.浇口的设置力求获得最好的制品外观质量浇口的设置应避免在制品外观形成烘印、蛇纹、缩孔等缺陷。

7.浇口应设置在较隐蔽的位置,且方便去除,确保浇口位置不影响外观及与周围零件发生干涉。

8.考虑在注塑时是否能自动操作

9.考虑制品的后续工序,如在加工、装配及管理上的需求,须将多个制品通过流道连成一体。

9.2流道设计

9.2.1主流道的设计

(1)定义:

主流道是指紧接注塑机喷嘴到分流道为止的那一段流道,熔融塑料进入模具时首先经过它。

一般地,要求主流道进口处的位置应尽量与模具中心重合。

(2)设计原则:

热塑性塑料的主流道,一般由浇口套构成,它可分为两类:

两板模浇口套和三板模

浇口套。

参照图9-2,无论是哪一种浇口套,为了保证主流道内的凝料可顺利脱出,应满足:

图9-2喷嘴与浇口套装配关系

D=d+(0.5~1)mm

(1)

R1=R2+(1~2)mm

(2)其它相关尺寸详见第十六章第四节。

9.2.2冷料井的设计

(1)定义及作用:

冷料井是为除去因喷嘴与低温模具接触而在料流前锋产生的冷料进入型腔而设置。

它一

般设置在主流道的末端,分流道较长时,分流道的末端也应设冷料井。

(2)设计原则:

一般情况下,主流道冷料井圆柱体的直径为6~12mm,其深度为6~10mm。

对于大型制品,冷料井的尺寸可适当加大。

对于分流道冷料井,其长度为(1~1.5)倍的流道直径。

(3)

分类:

图9-3底部带顶杆的冷料井

由于第一种加工方便,故常采用。

Z形拉料杆不宜多个同时使用,否则不易从拉料杆上脱落浇注系统。

如需使用多个Z形拉料杆,应确保缺口的朝向一致。

但对于在脱模时无法作横向移动的制品,应采用第二种和第三种拉料杆。

根据塑料不同的延伸率选用不同深度的倒扣。

若满足:

(D-d)/D1,

则表示冷料井可强行脱出。

其中1是塑料的延伸率。

表9-1树脂的延伸率(%)

树脂

PS

AS

ABS

PC

PA

POM

LDPE

HDPE

RPVC

SPVC

PP

1

0.5

1

1.5

1

2

2

5

3

1

10

2

b.推板推出的冷料井

这种拉料杆专用于胶件以推板或顶块脱模的模具中。

拉料杆的倒扣量可参照表9-1

锥形头拉料杆(图9-4c所示)靠塑料的包紧力将主流道拉住,不如球形头拉料杆和菌形拉料杆(图9-4b、c所示)可靠。

为增加锥面的摩擦力,可采用小锥度,或增加锥面粗糙度,或用复式拉料杆(图9-4d所示)來替代。

后两种由于尖锥的分流作用较好,常用

于单腔成型带中心孔的胶件上,比如齿轮模具

图9-4用于推板模的拉料杆

5–后模:

6–顶块

1-前模;2–推板:

3–拉料杆:

4–型芯固定板:

c.无拉料杆的冷料井

对于具有垂直分型面的的注射模,冷料井置于左右两半模的中心线上,当开模时分型面左右分开,制品于前锋冷料一起

拔出,冷料井不必设置拉料杆。

见图9-5。

d.分流道冷料井

一般采用图9-6中所示的两种形式:

图a所示的将冷料井做在后模的深度方向;图b所示的将分流道在分型面上延伸成为冷料井。

有关尺寸可参考图9-6。

1

熔融塑料沿分流道流动时,要求它尽快的充满型腔,流动中温度降尽可能小,流动

阻力尽可能低。

同时,应能将塑料熔体均衡地分配到各个型腔。

所以,在流道设计时,

应考虑:

(1)流道截面形状的选用

较大的截面面积,有利于减少流道的流动阻力;较小的截面周长,有利于减少熔

融塑料的热量散失。

我们称周长与截面面积的比值为比表面积(即流道表面积与其体积的

比值),用它来衡量流道的流动效率。

即比表面积越小,流动效率越高。

从表9-2中,我们可以看出相同截面面积流道的流动效率和热量损失的排列顺序.圆形截面的优点是:

比表面积最小,热量不容易散失,阻力也小。

缺点是:

需同时开设在前、后模上,而且要互相吻合,故制造较困难。

U形截面的流动效率低于圆形与正六边形截面,但加工容易,又比圆形和正方形截面流道容易脱模,所以,U形截面分流道具有优良的综合性能。

以上两种截面形状的流道应优先采用,其次,采用梯形截面。

U形截面

和梯形截面两腰的斜度一般为5°~10°。

(2)分流道的截面尺寸

分流道的截面尺寸应根据胶件的大小、壁厚、形状与所用塑料的工艺性能、注射速率及分流道的长度等因素来确定。

对于我们现在常见(2.0~3.0)mm壁厚,采用的圆形分流道的直径一般在3.5~7.0mm之间变动,对于流动性能好的塑料,比如:

PE、PA、PP等,当分流道很短时,可小到Φ2.5mm。

对于流动性能差的塑料,比如:

HPVC、PC、PMMA

等,分流道较长时,直径可Φ10~Φ13mm。

实验证明,对于多数塑料,分流道直径在

5~6mm以下时,对流动影响最大。

但在Φ8.0mm以上时,再增大其直径,对改善流动的影响已经很小了。

a.在流道不分支时,截面面积不应有很大的突变;

b.流道中的最小横断面面积大于浇口处的最小截面面积

在图9-7的a图中,HD1D2D3;d1大于浇口最小截面,一般取(1.5~2.0)mm,h=d1,锥度及一般取2°~3°,应尽可能大。

为了减少拉料杆对流道的阻力,应将流道在拉料位置扩大,如图9-7c所示;或将拉料位置做在流道推板上,如图9-7d所。

在图9-7的b图中,HD1,锥度及一般取2°~3°,锥形流道的交接处尺寸相差

0.5~1.0mm,对拉料位置的要求与图9-7a相同

9.3浇口设计

浇口是浇注系统的关键部分,浇口的位置、类型及尺寸对胶件质量影响很大。

在多数情况下,浇口是整个浇注系统中断面尺寸最小的部分(除主流道型的直接浇口外)

对于圆形流通截面,圆管两端的压力降为P,有以下关系式:

8aLQ

P=

4

R

式(9-1)

式中a

为熔融塑料的表观粘度

L---

-圆形通道的长度

Q

3

熔融塑料单位时间的流量(cm/sec)

R---

-圆管半径

对于模具中常见的窄缝形流动通道,经推导有

W窄缝通道的宽度

H窄缝通道的深度

8aLQ

P=3式(9-2)

WH3

从式(9-1)和(9-2)可知,当充模速率恒定时,流动中的模具入口处的压力降P与

下列因素有关:

(1)通道长度越长,即流道和型腔长度越长,压力损失越大;

(2)压力降和流道及型腔断面尺寸有关。

流道断面尺寸越小,压力损失越大。

矩形流道深度对压力降的影响比宽度影响大得多。

一般浇口的断面面积与分流道的断面面积之比约为0.03~0.09,浇口台阶长1.0~1.5mm左右。

断面形状常见为矩形、圆形或半圆形。

9.3.1浇口的类型

应用:

(1)可用于大而深的桶形胶件,对于浅平的胶件,由于收缩及应力的原因,容易

产生翘曲变形

(2)对于外观不允许浇口痕迹的胶件,可将浇口设于胶件内表面,如图9-8c所示。

这种设计方式,开模后胶件留于前模,利用二次顶出机构(图中未示出)

将胶件顶出。

2.侧浇口优点:

1.)形状简单,加工方便,

2.)去处浇口较容易。

缺点:

1.)胶件与浇口不能自行分离,W

2.)胶件易留下浇口痕迹。

参数:

1.)浇口宽度W为(1.5~5.0)mm,一般取W=2H。

大胶件、透明胶件可酌情加大;图9-9侧浇口

2.)深度H为(0.5~1.5)mm。

具体来说,对于常见的ABS、

HIPS,常取H=(0.4~0.6),其中为胶件基本壁厚;对于流动性能较差的PC、

PMMA,取H=(0.6~0.8);对于POM、PA来说,这些材料流道性能好,但凝固速率也很快,收缩率较大,为了保证胶件获得充分的保压,防止出现缩痕、皱纹等缺陷,建议浇口深度H=(0.6~0.8);对于PE、PP等材料来说,且小浇

口有利于熔体剪切变稀而降低粘度,浇口深度H=(0.4~0.5)应用:

1.)适用于各种形状的胶件,但对于细而长的桶形胶件不以采用。

3.搭接式浇口

优点:

1.)它是侧浇口的演变形式,具有侧浇口的各种优点;

2.)是典型的冲击型浇口,可有效的防止塑料熔体的喷射流动。

缺点:

1.)不能实现浇口和胶件的自行分离;

2.)容易留下明显的浇口疤痕。

参数:

可参照侧浇口的参数来选用。

应用:

适用于有表面质量要求的平板形胶件。

4.针点浇口

优点:

1.)浇口位置选择自由度大,

2.)浇口能与胶件自行分离,

3.)浇口痕迹小,

4.)浇口位置附近应力小。

缺点:

1.)注射压力较大,

2.)一般须采用三板模结构,结构较复杂。

参数:

1.)浇口直径d一般为(0.8~1.5)mm,

2.)浇口长度L为(0.8~1.2)mm。

3.)为了便于浇口齐根拉断,应该给浇口做一

锥度,大小15°~20°左右;浇口与流道相接处圆弧R1连接,使针点浇口拉断时不致损伤胶件,R2为(1.5~2.0)mm,R3为(2.5~3.0)mm,

深度h=(0.6~0.8)mm。

图9-11针点浇口

应用:

常应用于较大的面、底壳,合理地分配浇口有助于减少流动路径的长度,获得较理想的熔接痕分布;也可用于长桶形的胶件,以改善排气。

5.扇形浇口

优点:

1.)熔融塑料流经浇口时,在横向得到更加均匀的分配,降低胶件应力;

2.)减少空气进入型腔的可能,避免产生银丝、气泡等缺陷。

缺点:

1.)浇口与胶件不能自行分离,

2.)

将浇口加工平整。

参数:

1.)常用尺寸深H为(0.25~1.60)mm,

2.)宽W为8.00mm至浇口侧型腔宽度的1/4。

3.)浇口的横断面积不应大与分流道的横断面积。

应用:

常用来成型宽度较大的薄片状胶件,流动性能较差的、透明胶件。

比如PC、PMMA

6.潜伏式浇口(鸡嘴入水)

优点:

1.)浇口位置的选择较灵活;

2.)浇口可与胶件自行分离;

3.)

浇口痕迹小;

4.)

两板模、三板模都可采用。

缺点:

1.)浇口位置容易拖胶粉;

2.)

入水位置容易产生烘印;

3.)

需人工剪除胶片;

4.)

从浇口位置到型腔压力损失较大

参数:

1.)浇口直径d为0.8~1.5mm,

图9-13潜伏式浇口

2.)进胶方向与铅直方向的夹角为30°~50°之间,

3.)鸡嘴的锥度为15°~25°之间。

4.)与前模型腔的距离A为(1.0~2.0)mm。

应用:

适用于外观不允许露出浇口痕迹的胶件。

对于一模多腔的胶件,应保证各腔从浇口到型腔的阻力尽可能相近,避免出现滞流,以获得较好的流动平衡。

7.弧形浇口

优点:

浇口入水端直径d为(Φ0.8~Φ1.2)mm,长(1.0~1.2)mm;值为2.5D左右;

应用:

常用于PC、PMMA等高透明度的塑料制成的平板形胶件。

9.圆环形浇口优点:

(1)流道系统的阻力小;

(2)可减少熔接痕的数量;

(3)有助于排气;

(4)制作简单。

缺点:

(1)需人工去除浇口;

(2)会留下较明显的浇口痕迹。

参数:

(1)为了便于去除浇口,浇口深度h一般为(0.4~0.6)mm;

(2)H为(2.0~2.5)mm。

应用:

适用于中间带孔的胶件。

10.斜顶式弧形浇口优点:

1)不用担心弧形流道脱模时被拉断的问题;

2)浇口位置有很大的选择余地;

3)有助于排气。

缺点:

1)胶件表面易产生烘印;

2)制作较复杂;

3)弧形流道跨距太长可能影响冷却水的布置参数:

可参考侧浇口的有关参数。

应用:

1)主要适用于排气不良的或流程长的壳形胶件;

2)为了减少弧形流道的阻力,推荐其截面形状选用U形截面(见图示);

3)斜顶的设计可参照“第7.7节斜顶、摆杆机构”;

9.3.2浇口的布置

1.避免熔接痕出现于主要外观面或影响胶件的强度

根据客户对胶件的要求,把熔接痕控制在较隐蔽及受力较小的位置。

同时,避免各熔

接痕在孔与孔之间连成一条线,降低胶件强度。

如图9-18(a)所示,胶件上两孔形成的熔

接痕连成了一条线,这将降低胶件的强度。

应将浇口位置按图9-18(b)来布置。

为了增加熔接牢度,可以在熔接痕的外侧开设冷料井,使前锋冷料溢出。

对于大型框架型胶件,可增设辅助流道,如图9-19所示;或增加浇口数目,如图9-20所示,以缩短熔融塑料

图9-20采用多浇口以增加熔接痕的牢度

2.防止长杆形胶件在注塑压力的作用下发生变形;

见图9-21,在方案(a)中,型芯在单侧注塑压力的冲击下,会产生弯曲变形,从而导致

胶件变形。

采用方案(b),从型芯的两侧平衡的进胶,可有效地消除以上缺陷

3.避免影响零件之间的装配或在外露表面留下痕迹;

如图9-22(a)所示,为了不影响装配,在按键的法兰上做一缺口,浇口位置设在缺口上,以防止装配时与相关胶件发生干涉。

如图9-22(b)所示,浇口潜伏在胶件的骨位上,

 

图9-24喷射造成胶件的浇口附近烘印

5.为了便於流动及保压,浇口应设置在胶件壁厚较厚处

6.有利于排气

如图9-25所示,一盖形胶件,顶部较四周薄,采用侧浇口,如图(a),将会在顶部A处形成困气,导致熔接痕或烧焦。

改进办法如(b)图,给顶面适当加胶,这时仍有可能在

侧面位置A产生困气;如按(c)图所示,将浇口位置设于顶面,困气现象可消除

图9-25浇口位置对排气的影响

(1)

A-熔接痕;紫色-流动方向

如图9-26所示,若按(a)图的方案进胶,预计将在位置A产生困气,建议采用方案

(b),可有助于气体排出型腔。

圖9-28按平衡式流道來佈置澆口

9.考虑注塑生产的效率,便于流道系统与胶件的分离

模具结构确定后,应考虑流道系统和胶件便于分离,采用针点式浇口、潜伏式浇口、弧形流道可实现流道系统和胶件自动分离。

选择潜伏式浇口位置时,应优先考虑在胶件本身结构上,一方面减少注塑压力,另一方面,避免生产时去除胶片。

侧浇口、搭接式浇口、圆环形浇口、斜顶式浇口较易分离。

直接浇口、扇形浇口、护耳式浇口则较难分离。

10.考虑加工方便

对于一模多腔的弧形流道结构,为了减少镶块的数量,应在后模将各弧形流道设置在大镶块的镶拼面上,如图9-29所示,后模由7块镶块组成,各个型腔的弧形流道在各镶块各出一半,这将简化加工工艺。

 

图9-29弧形流道的镶拼结构

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1