切管机工艺设计方案.docx

上传人:b****8 文档编号:11317967 上传时间:2023-02-26 格式:DOCX 页数:32 大小:758.30KB
下载 相关 举报
切管机工艺设计方案.docx_第1页
第1页 / 共32页
切管机工艺设计方案.docx_第2页
第2页 / 共32页
切管机工艺设计方案.docx_第3页
第3页 / 共32页
切管机工艺设计方案.docx_第4页
第4页 / 共32页
切管机工艺设计方案.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

切管机工艺设计方案.docx

《切管机工艺设计方案.docx》由会员分享,可在线阅读,更多相关《切管机工艺设计方案.docx(32页珍藏版)》请在冰豆网上搜索。

切管机工艺设计方案.docx

切管机工艺设计方案

 

切管机工艺设计方案

1.确定工艺方案

此次的设计任务为设计一简单高效的切管机,为此,对如下几种设计方案进行

比较:

方案一:

用锯弓锯断金属管:

需要锯弓往复的切削运动和滑枕摆动的进给与让刀运动。

机器的结构比较复杂,锯切运动也不是连续的。

当金属直径相差较大时,锯片还要调换,生产效率低。

用切断刀切断金属管:

如在车床上切断,但是一般车床主轴不过几十毫米,通不过直径较大的金属管,并且占有一台普通机床,不太经济。

或者用专用的切管机,其工作原理是工件夹紧不动,装在旋转刀架上的两把切断刀,既有主切削的旋转运动,又有进给运动,工作效率高,但是机床结构比较复杂。

用砂轮切断金属管:

需要砂轮旋转的切削运动和摇臂向下的进给运动。

此机构的结构简单,生产效率高,但是砂轮磨损较快费用很高。

方案四:

用碾压的方法切断金属管:

其需要金属管旋转的切削运动和圆盘向下的进给运动。

这种方法是连续切削的,生产效率高,机器的结构也不太复杂。

但是会使管子的切口内径缩小,一般用于管子要求不高的场合。

本次设计的要求为滚子转速n=70r/min,圆盘刀片直径a=80mm加工管件的直径

为3/8〃〜4〃,电机额定功率i为P=1.5Kw满载转速为N=1410r/min,每天工作10小时,载荷变动小。

根据毕设要求和结合生产实际。

在本次设计中选用方案四。

工艺方案确定后,并根据有关数据,

加上其它一些必要的尺寸,

得出工艺方案的原理图如图1-1

图1-1工艺方案原理图

方案四管机的工作原理:

动力由电动机—带轮—蜗杆—蜗轮—直齿轮—中间惰轮一滚子轴上小齿轮。

由于滚子的旋转运动,从而带动工件的旋转,实现切削时的主运动。

与此同时,操作手轮,通过螺旋传动,将圆盘刀片向下进给移动,并在不断增加刀片对管子的压力过程中,实现管子的切割工作。

2.传动装置的设计与计算

2.1电动机的选择

要选择电动机,必须了解电动机,出厂的每台电动机都有铭牌,上面标有电动机的主要技术参数。

因此,要合理地选择电动机,就要比较电动机的这些特性。

在进行简单机械设计时,应选择好电动机的类型,转速和功率。

2.1.1类型的选择

工业上一般用三相交流电源,所以选用三相交流异步电动机。

三相交流异步电机具有结构简单,工作可靠,价格便宜,维护方便等优点,所以应用广泛。

在选择电动机的类型时,主要考虑的是:

静载荷或惯性载荷的大小,工作机械长期连续工作还是重复短时工作,工作环境是否多灰尘或水土飞溅等方面。

在本次设计中由于其载荷变动较小,有灰尘故选择笼式三相交流异步电机。

2.1.2转速的选择

异步电机的转速主要有3000r/min、1500r/min、1000r/min、750r/min几种。

当工作机械的转速较高时,选用同步转速为3000r/min的电机比较合适。

如果工作机

械的转速太低(即传动装置的总传动比太大)将导致传动装置的结构复杂,价格较

高。

在本次设计中可选的转速有1500r/min和750r/min。

在一般机械中这两种转速的电机适应性大,应用比较普遍。

2.1.3功率的选择

选择电动机的容量就是合理确定电动机的额定功率,电动机功率的选择与电动机本身发热、载荷大小、工作时间长短有关,但一般情况下电动机容量主要由运行发热条件决定。

故根据电动机的额定功率大于所需功率10%来选择电动机。

综上所述,本次设计的切管机电机额定功率为P=1.5Kw满载转速为N=1410r/min,每天工作10小时,载荷变动小用于多尘场合。

选用Y90L-4型电动机,其额定功率P电=1.5Kw,满载转速n电=1400r/min,同步转速1500r/min(4极),最大转矩为2.3Nm。

电动机确定后,计算出切管机的传动比为:

n电1400

i总===20(2-1)

n工70

2.2拟订传动方案

传动方案的拟定,通常是指传动机构的选择及其布置。

这是彼此相联系的两个方面。

其运动形式大致分为;

(1)传递回转运动的有:

带传动,链传动,齿轮传动,蜗轮传动等;

(2)实现往复直线运动或摆动的有:

螺旋传动,齿轮齿条传动,凸轮机构,曲柄滑块机构等;

(3)实现间歇运动的有棘轮机构和槽轮机构等;

(4)实现特定运动规律的有凸轮机构和平面连杆机构等。

传动机构的选择就是根据机器工作机构所要求的运动规律,载荷的性质以及机器的工作循环进行的。

然后在全面分析和比较各种传动机构特性的基础上确定一种较好的传动方案。

机器通常由原动机、传动装置和工作机等三部分组成。

传动装置位于原动机和工作机之间,用来传递运动和动力,并可以改变转速、转矩的大小或改变运动形式,以适应工作机功能要求。

传动装置的设计对整台车的性能、尺寸、重量和成本都有很大影响,因此需要合理的拟定传动方案。

在本次毕业设计中,已知切管机的i总=20,若用蜗杆,一次降速原本可以达到,其方案如图2-1。

但是由于切割的管子最大

直径为4〃,如图1-1故两个滚筒的中心距不能小于108mm,因此带动两个滚筒的齿轮外径不能大于滚筒的直径(?

100mm)o若取蜗杆zi=2,蜗轮Z2=40,m=4,则蜗轮分度圆直径d2=160mm,比同一轴上的齿轮大,按图2-2-1的布置,蜗轮将要和滚筒相撞,为此,应该加大两轴之间的中心距。

这样就要加上一个惰轮,才可以解决这个问题,如图2-2-2。

在本次设计中,取蜗轮齿数为Z2=50,模数m=4。

由于带传动具有缓冲和过载打滑的特性,故可将最为在电机之后的第一级传动,此外开式齿轮传动不宜放在高速级,因为在这种条件下工作容易产生冲击和噪音,故应将齿轮传动放在底速级。

一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、成本低廉以及使用维护方便。

经比较各种传动方案,在本次设计中确定采用带传动、蜗杆传动、齿轮传动等机构组成的传动方案。

并初步画出其传动系统图,如图2-2-3。

图2-2-2蜗轮蜗杆加中间惰轮传动方案图

在传动方案确定后,根据i总=ii•……的关系分配传动比•下面对个机构的主要特

性进行比较,如表2-2-1:

图2-2-3带传动、蜗轮蜗杆、中间惰轮、齿轮方案图

表2-2-1几种主要传动机构的特性比较

特性

类型

带传动

齿轮传动

蜗杆传动

主要优点

中心距变化范围较大,结构简单,传动平稳,能缓冲,起过载安全保护作用

外廓尺寸小,传动比准确,效率高,寿命长,适用的功率和速度范围大

外廓尺寸小,传动比大而准确,工作平稳,可制成自锁的传动

单级传动比,i

开口平型带:

2〜4,最大值<6三角带型:

2〜4,最大值

开式圆柱齿轮:

4〜6,最大值w15开式圆柱正齿轮:

闭式:

10〜40,最大

值w100

开式:

15〜60,最大

<7有张紧轮平型带:

3〜5最大值<8

3〜4,最大值<10

闭式圆柱齿轮:

2〜3,最大值<6

值<100

外廓尺寸

中,小

成本

效率H

平型带0.92〜0.98

三角带0.9〜0.96

开式加工齿0.92〜

0.96

闭式0.95〜0.99

开式0.5〜0.7闭式

0.7〜0.94自锁

0.40〜0.45

考虑到传动装置的结构,尺寸,重量,工作条件和制造安装等因素,必须对传动比

P

进行合理的分配•根据公式T=9550—(Nm)可知:

当传动的功率P(Kw)—定时,转速

n

n(r/min)越高,转矩T就越小•为此,在进行传动比的分配时遵循”降速要先少后多”.V带传动的传动比不能过大,否则会使大带轮半径超过减速器的中心高,造成尺寸不协调,并给机座设计和安装带来困难,又因为齿轮在降速传动中,如果降速比较大,

就会使被动齿轮直径过大,而增加径向尺寸,或者因小齿轮的齿数太少而产生根切现象•而其在升速传动中,如果升速比过大,则容易引起强烈的震动和噪音,造成传动不平稳,影响机器的工作性能.为此,各机构的传动比分配情况如下:

1

ii=1.2;i2=50;i3=1.5;i4=(2-2)

4.5

1

i总=i1i2i3i4=1.2501.5=20(2-3)

4.5

注:

传动系统只大齿轮是个惰轮,它不改变传动比只起加大中心距,改变滚筒旋转方向的作用.

2.3计算各轴的转速、功率和转矩

由表一我们可知,取带=0.96,蜗=0.72,齿=0.94,滚=0.99(一对滚动轴承的

效率),根据公式:

n1P

n2=—及N2=,T=955—R=T轄(2-5)

in

可知各轴的转速为:

各轴的功率为:

各轴传递的转矩为:

=10.231.20.96500.720.99)4夕务%2

第三轴,因为装的是过渡齿轮(惰轮),所以此轴不承受转矩,只受弯矩,它是根心轴。

=T电ii2•i3r4带.蜗.齿2

-滚3

=10.231.2501.50.960.720.94汉0.993汉1/4(2-17)

=122.30(Nr)

将以上各数据制成如表2-3-1所示的表格:

表2-3-1各轴计算结果

轴号

电机轴

I

n

IV

传动比i

1.2501.51/4.5

转速

n(r/min)

1410

116.7

23.3

15.5

70

功率P(Kw)

1.5

1.44

1.03

0.96

0.89

转矩T

(N-m)

10.23

11.78

420.02

122.3

在计算传动比的时候,当带轮直径和齿轮模数确定后,实际传动比就等于两带轮直径之比,或者两齿轮齿数之比,其结果可能出现与上表数据不一致。

当i<5时,容许误差不大于+-2.5%;当i》时,则不容许大于+-4%。

2.4进行传动机构的设计与计算

2.4.1带传动设计

带传动适用的场合:

中心距变化范围较大,结构简单,传动平稳,能缓冲,可起过载安全保险的作用。

缺点是外廓尺寸大,轴上受力较大,传动比不能严格保证,寿命低(约3000~5000小时)

(2-18)

P计=KiP电=1.11.5=1.65(Kw)

由P计和n1=1400r/min,可查知,选用A型三角带。

初步选定小带轮直径d1=100mm,大带轮直径d2=i1d1=1.2100=120mm取其标准

直径d2=125mm

验算带轮:

小于25m/s,适合。

初定中心距ao,按公式:

0.7(di+d2)

取标准长度为L计=1033mm,其内圆周长度L内=1000mm。

所以实际中心距为:

〜176o

176°120o,合适臂支承,故选较小的讪值,取讪=10。

取z=2根。

2.4.2齿轮模数的确定

齿轮模数的大小主要决定于齿轮的材料,热处理方式和受力的大小等因素。

此次齿轮模数的确定可以采用公式法进行设计。

查表可知:

齿形系数y=0.298,

许用弯曲应力[c弯]=19.6kg/mm2,考虑到开式齿轮传动齿面磨损,许用弯曲应力降低20%则实际许用弯曲应力为:

2

[c弯]'=19.680%=15.68kg/mm

对于开式齿轮传动,齿宽系数为帕=8〜15,现因齿轮制造精度较低,并且为悬

载荷系数K=1.3〜1.5,由于悬臂支承,取K=1.3,根据公式:

…1.3U03

=1253

^54x10x4.67x23.5

(2-24)

=12530.0000226=1250.028:

3.52

取标准值m=3mm,强度稍微弱些。

在一个传动系统中各齿轮的模数不完全相同,转速较高,传递转距较小,模数也就较小。

但是为了加工个测量方便,齿轮模数的种类应越少越好,故此切管机的齿轮模数都取为m=3mm。

2.4.3蜗轮蜗杆模数的确定

首先选择材料:

蜗杆选用45号钢,调质处理;蜗轮采用无锡青铜ZQA19-4

根据公式:

m=296』WVk即mZA

-29.6.0.0022

3.8mm

取标准模数m=4,q=11

2・4・4齿数的确定

齿数主要是根据传动比的要求确定的,所以根据各个传动比有:

1)1).确定蜗杆头数和蜗轮齿数:

在选择蜗杆头数时,在考虑传动比的要求外还应该考虑到效率、自锁和制造等因素。

而蜗轮齿数的选择则主要是考虑是否会产生根切和蜗轮的直径(也即体积问题)。

如从提高效率的观点看,头数越多,效率越高。

从自锁的观点看,就只能选择单头的。

从制造的观点看,头数越多,制造越困难。

因此在选择蜗杆头数时,要全面分析上述因素。

一般来说,在动力传动中,

当主要问题是提高效率时,采用多头;当提高精度(分度蜗杆),自锁性好或要求

降速比较大是主要矛盾时,采用单头。

综合上述原因,查阅冶金工业出版社的《机械零件设计手册》第二版上册可知:

蜗杆头数Z1=1,蜗轮齿数Z2=5O。

2)•确定齿轮齿数:

齿轮齿数的选择,应该综合考虑传动比和最小齿数的要求,最小齿数的限制与齿轮的加工方法有关,如用齿轮滚刀或插齿刀加工直齿轮准齿轮,为避免根切,齿数不得小于17,所以在本次设计中初步选取最小齿轮齿数为Z4=18。

这个齿轮装在切管机滚筒的轴上。

由根据工作条件确定的传动比可知:

i3=△=1.5,

Z2

iZ41

i4:

Z34.5

181

将Z4=18代入,则i4=一一,z3=184.5=81。

并由此可以推得:

Zs4.5

Z2、Z—。

is1.5

从而,可以得到切管机全部齿轮(蜗轮蜗杆)的齿数:

Z1=1,Z2=50,Z2'=54,

Z3=81,Z4=18。

如图2-4-1

图2-4-1切管机齿轮(蜗轮蜗杆)的齿数

2.5进行总体结构设计,画出总体方案图

总体结构设计要考虑这台机器从原动机,传动装置到工作机构的总布局,操纵方式,机器的形式和大致的轮廓尺寸。

如切管机设计了一柜式工作台,台面下柜内吊装电动机和减速箱,台面上安装一对滚筒。

当按下开关,动力经减速箱传给滚筒,使二滚筒同向旋转。

滚筒背后装一单臂式支架,支架上装着一组活动螺杆套筒(即螺旋传动机构),套筒下端装一个圆盘刀片。

当旋动手轮,螺母就把套筒和刀片压下,直至切断钢管。

切管机总体结构如图2-5-1

 

图2-5-1总体结构图

3.结构设计

3.1初算各轴的最小直径

由于轴上弯曲应力的分布和轴的结构尚属未知,只知道轴所传递的转矩(转速),所以按照转矩(转速)初算轴的直径。

I轴:

初步选取材料为45钢,调质处理。

根据公式d_A3N计算。

因为I轴为

悬臂轴,查表可知:

取A=14,Pi=1.44(Kw),ni=116.7r/min,则:

(3-1)

dmin启=14^0.000123=14汉0.11"5cm

考虑到键槽的削弱等因素,取标准直径20mm。

U轴:

初步选取材料为45钢,调质处理。

取A=12,已知Pn=1.03(Kw),n2=23.3r/min

川轴:

此轴为传动心轴,暂选材料为45钢,调质处理,由于其受力情况未知,

初选其最小轴径为50mm,待后进行检验。

W轴:

初步选取材料为45钢,调质处理。

1089』_

d皿min-1231230.013=120.232.8cm(3-3)

取标准直径为30mm。

将所得结果制成下表,供设计计算时应用:

表3-1-1各轴最小直径

I

n

IV

最小直径(mm)

20

45

50

30

3.2计算各主要传动件的结构尺寸

(1)■三角带轮

已知选用A型三角胶带,小三角带轮计算直径为d小=100mm;查表7-10可知:

h顶=3.5mm、S=6rm,H=12mm、e=15+-0.3mm、f=10mm、:

o=34°、bo=i3.imm。

轮宽B=(z-1)e+2f=(2-1)15+210=35mm;

外径d顶小=d小+2h顶=100+23.5=107mm;

孔径d等于电动机输出轴直径,查电动机JO2得d轴=22mm;

其结构形式由表7-11可知为实心轮。

大三角带轮计算直径d大=125mm;

h顶、SH、e、f、B等尺寸和小三角带轮一样。

0=38°,b0=13.4mm。

外径d顶大=d+2h顶=125+23.5=132mm;

孔径d等于与其配合的轴I的轴径,查表三可知I轴的d轴=20mm;

结构形式由表7-11可知为辐板式:

轮缘直径d缘=d顶大-2(H+S)=132-2(12+6)=96mm;

轮毂直径d毂=(1.8〜2)d轴=36〜40mm,取d毂=40mm;轮毂宽度L=(1.5〜1.8)d轴=30〜36mm,取L=35mm;辐板厚度由表7-11查得为S=10mm;

辐板孔圆周定位尺寸:

s-0.5S=0.510=5mm,因此,孔直径为d孔=d缘"毂一2S,=18mm

2

(2).蜗轮、蜗杆

已知Z1=1、Z2=50,m=4,q=11,根据表10-2得至U:

蜗杆分度圆直径

d1=qm=114=44mm;

蜗轮分度圆直径

蜗杆齿顶圆直径

蜗轮齿顶圆直径

d2=z2m=504=200mm;

d顶1=m(q+2)=4(11+2)=52mm;

d顶2=m(z2+2)=4(50+2)=208mm;

蜗杆齿根圆直径

d根1=m(q-2.4)=4(11-2.4)=34.4mm;

蜗轮齿根圆直径d根2=m(Z2-2.4)=4(50-2.4)=190.4mm;

蜗杆分度圆圆柱上螺旋升角一arcta,当zi=1、q=11时,查得一5°11'40";

q

蜗杆切制螺纹部分的长度L>(11+0.06z0m=(11+0.0650)4=56mm;

蜗轮外圆直径d外=d顶2+2m=208+24=216mm;

蜗轮宽度B<0.75c顶1=0.7552=39mm;

11

I>H轴中心距:

a-n二—m(qz2)4(1150)=122mm

122

可知:

轮缘厚度f=1.7m=1.74=6.8mm

蜗轮的孔径d取决于轴的结构设计,因蜗轮轴的最小直径为42mm,取孔径

d=55mm。

轮毂外径d毂=(1.6〜1.8)d=(1.6〜1.8)55=88〜99mm

取d毂=90mm

轮毂宽度L=(1.2〜1.8)d=(1.2〜1.8)55=66〜99mm

取L=70mm

辐板厚度c>1.5m=1.54=6,一般采用c=10mm

蜗轮包角2=90°〜100°,—般采用2=90°

(3)齿轮

1)已知U轴上齿轮z'2=54,m=3,则:

分度圆直径d'2=mz'2=354=162mm

齿顶圆直径d'顶2=m(z'2+2)=3(54+2)=168mm

齿根圆直径d'根2=m(z'2-2.5)=3(54-2.5)=154.5mm

此次齿轮制造精度教低,且是悬臂布置,故齿宽系数宜选小值,现取Wm=10

所以齿宽B=Wmm=30mm.

由于d'顶2>160mm,可采用辐板式结构的锻造齿轮。

轮缘内径d缘=d'顶2-10m=168-30=138mm

轮毂外径d毂=1.6d轴2=1.645=72mm(d轴2齿轮的孔径,由表三可知

d轴2=45mm)

辐板厚度c=0.3B=0.330=9mm

辐板孔圆周定位尺寸:

d0=0.5(d缘+d毂)=0.5(138+72)=105mm(3-5)

辐板孔直径:

d孔=0.25(d缘-d毂)=0.25(138-72)=16.5mm,取d孔=17mm。

齿轮示意图如图3-2-1

图3-2-1n轴齿轮示意图

2)已知川轴上齿轮Z3=81,m=3,则:

分度圆直径d3=mz3=381=243mm

齿顶圆直径d顶3=m(Z3+2)=3(81+2)=249mm

齿根圆直径d根3=m(Z3-2.5)=3(81-2.5)=235.5mm

齿宽B=30mm。

由于d根3>160mm,可采用辐板式结构的锻造齿轮。

轮缘内径d缘=d顶3-10m=249-30=219mm

轮毂外径d毂=1.6d轴3=1.650=80mm(d轴3——齿轮的孔径,由表三可知

d轴3=50mm)

辐板厚度c=0.3B=0.330=9mm

辐板孔圆周定位尺寸:

d0=0.5(d缘+d毂)=0.5(219+80)=149.5mm(3-6)

辐板孔直径:

d孔=0.25(d缘-d毂)=0.25(219-80)=34.75mm,取d孔=35mm。

n、川轴的中心距:

1'1

an、皿=2m(z2■z3)3(5481)=202.5mm(3-7)

川轴上齿轮如图3-2-2

图3-2-3W轴齿轮示意图

3.3绘制部件的装配草图

已知各主要传动件的基本参数和总体结构图如图3-3-1,确定各零件的位置和

箱体的外廓:

 

图3-3-1总体装配图

 

图3-3-2减速箱轮廓图

1)根据表中的数据和待定尺寸,并根据总体结构图。

暂定箱壳外型尺寸为:

长=d外+2A+23=162+210+28=198mm,取为200mm

宽度估计为165mm

高=64+202.5+A+S+c外/2=64+202.5+81+10+8=365.5mm,取为366mm。

表3-3-1减速箱各零件间相互位置尺寸

代号

名称

推存尺寸

说明

切管机减速箱取值

Bi

齿轮宽度

由结构

设计定

B1=30

B

带轮宽度

由结构

设计定

B=35

b

轴承宽度

根据轴颈直径,按中或轻窄

系列决定

查手册

待定,如蜗杆轴的轴承,暂选

为6205,则b=15

箱壳壁厚

6化0.04a+(2琴3)兰8,a

为蜗轮传动中心距

取S=8

旋转零件顶

圆至箱壳内

壁的距离

△=1.2S

取厶=10

△i

蜗轮齿顶圆至轴承座边缘的径向距

△1=10〜12

取厶1=10

Li

蜗杆中心至

轴承中心的

距离

L1=0.8a,

a为蜗杆传动中心距

已知a=122

故L1=97.6

L2

轴的支承

间跨距

由设计

L3

箱外旋转零件的中面至支承点的距离

L3=b+L5+L6+込

22

待定,暂取

1535

L3=+120+15+=60

322

L4

滚动轴承

端面至箱壳

当用箱壳内的油润滑轴承

时,L4~5

取L4=5

内壁的距离

当用脂润滑轴承时,并有挡

油环时,L4=10〜15

L5

轴承端面至端盖螺钉头顶面的距离

由端盖结构和固紧轴承的方法确定

待定,暂选L5=20

L6

箱外旋转零件端面至端盖螺钉头顶面的距离

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1