经典小学奥数五年级巧算.docx
《经典小学奥数五年级巧算.docx》由会员分享,可在线阅读,更多相关《经典小学奥数五年级巧算.docx(21页珍藏版)》请在冰豆网上搜索。
经典小学奥数五年级巧算
【经典】小学奥数五年级巧算
一、拓展提优试题
1.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.
2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.
3.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小 .
4.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是 .
5.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是 米/分钟.
6.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.
7.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:
“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:
“我知道你们选的数了!
”.你认为甲和丁选的数的乘积是 .
8.(8分)6个同学约好周六上午8:
00﹣11:
30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:
每人打了
分钟.
9.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是 .
10.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是 分.
11.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出 元.
12.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是 .
13.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有 个.
14.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?
15.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:
“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:
“我知道你们选的数了!
”.你认为甲和丁选的数的乘积是 .
16.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是 .
17.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨
,第二天下跌
,第三天上涨
,第四天下跌
,此时他的股票价值刚好5000元,那么小胖这个月的工资是 元.
18.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水 千克.
19.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有 人.
20.用1、2、3、5、6、7、8、9这8个数字最多可以组成 个质数(每个数字只能使用一次,且必须使用).
21.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有 只.
22.已知
,那么
______。
23.由
个棱长为
的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
24.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是 419 .
【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.
25.有一行数:
1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有 是偶数.
26.(7分)将偶数按下图进行排列,问:
2008排在第 列.
2 4 6 8
16 14 12 10
18202224
32302826
…
27.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:
一共可以拼成 种不同的含有64个小正方体的大正方体.
28.数一数,图中有多少个正方形?
29.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是 .
30.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:
“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年 岁,(注:
数a的立方等于a×a×a,数a的四次方等于a×a×a×a)
31.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是 .
32.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了 个松果.
33.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是 ;
34.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市 千米处追上乙车.
35.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月 日.
36.如图,正方形的边长是6厘米,AE=8厘米,求OB= 厘米.
37.如图:
平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是 平方厘米.
38.用0、1、2、3、4这五个数字可以组成 个不同的三位数.
39.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有 个细胞.
40.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了 米.
【参考答案】
一、拓展提优试题
1.解:
根据分析可得,
朝上一面的4个数字的和最小是:
1×4=4,最大是6×4=24,
24﹣4+1=21(种)
答:
朝上一面的4个数字的和有21种.
故答案为:
21.
2.解:
220﹣83×2
=220﹣166
=54(元)
54÷(2+7)
=54÷9
=6(元)
答:
网球每个6元.
3.解:
最大的三位偶数是998,
要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,
4306﹣(998+996+994+992)
=4306﹣3980
=326,
所以此时A最小是326.
故答案为:
326.
4.解:
因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,
所以差最小的是:
9和5,
所以这两个数分别是:
9×3=27
5×3=15
27﹣15=12
答:
这两个数的差最小是12.
故答案为:
12.
5.解:
1800÷320﹣1800÷(320×1.5)
=5.625﹣3.75
=1.875(分钟)
320×[5﹣(17﹣15+1.875)]÷5
=320×[5﹣3.875]÷5
=320×1.125÷5
=360÷5
=72(米/分钟)
答:
李双推车步行的速度是72米/分钟.
故答案为:
72.
6.解:
假设每人每分钟修大坝1份
洪水冲毁大坝速度:
(10×45﹣20×20)÷(45﹣20)
=(450﹣400)÷25
=50÷25
=2(份)
大坝原有的份数
45×10﹣2×45
=450﹣90
=360(份)
14人修好大坝需要的时间
360÷(14﹣2)
=360÷12
=30(分钟)
答:
14人修好大坝需30分钟.
故答案为:
30.
7.解:
依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:
120
8.解:
6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:
每人打了140分钟.
故答案为:
140.
9.解:
根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,
最后只剩下:
2004、2010、2016,再将三个数分别分解质因数得:
2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,
显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:
2、3、4、6、7、8、9.
故答案是:
2016.
10.解:
(84×10﹣93)÷(10﹣1)
=747÷9
=83(分)
答:
其他9个人的平均分是83分.
故答案为:
83.
11.解:
根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;
清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;
再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;
再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;
再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;
综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.
故答案是:
3.
12.解:
3n是5的倍数,3n的个数一定是0或5
又因为大于0的自然数n是3的倍数,
所以3n最小是45
3n=45
n=15
所以n最小取15时,n是3的倍数,3n是5的倍数.
答:
n的最小值是15.
故答案为:
15.
13.解:
1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,
其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),
每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,
即不能被3整除的数共有18个.
故答案为:
18.
14.解:
42÷2=21(只)
21÷3×26
=7×26
=182(只)
182÷2×3
=91×3
=273(只)
273×3=819(只)
答:
3头牛可以换819只鸡.
15.解:
依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:
120
16.解:
依题意可知:
经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.
2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.
故答案为:
1034
17.解:
5000÷(1﹣
)÷(1+
)÷(1﹣
)÷(1+
)
=5000×
×
×
×
=5000(元)
答:
小胖这个月的工资是5000元.
故答案为:
5000.
18.解:
2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:
B桶中原来有水3.5千克.
故答案为:
3.5.
19.解:
设既带水壶又带水果的为x人,则参加春游的同学共有2x人,
由题意可得:
80+70﹣x+6=2x
156﹣x=2x
3x=156
x=52
则2x=2×52=104
答:
则参加春游的同学共有104人.
故答案为:
104.
20.解:
可以组成下列质数:
2、3、5、7、61、89,一共有6个.
答:
用1、2、3、5、6、7、8、9这8个数字最多可以组成6个质数.
故答案为:
6.
21.解:
设鸡有x只,则兔就有100﹣x只,根据题意可得方程:
2x﹣4×(100﹣x)=26,
2x﹣400+4x=26,
6x=426,
x=71,
答:
鸡有71只.
故答案为:
71.
22.
[解答]由于
,所以
,所以
23.
[解答]设长方体的长、宽、高分别为
(不妨设
),容易知道只有一面染色的小正方体只有每个面上可能有一些。
要使得其最多,那么
(否则内部有太多的小正方体都是所有面没有染色的)。
由于
。
此时一面染色的小正方体的个数为
。
要使得
最大,那么就是要使
最小。
考虑到
,容易知道当
时,
最小。
所以只有一面染色的小正方体最多有
24.解:
西巴巴数字8表示阿拉伯数字9﹣8=1,
西巴巴数字3表示阿拉伯数字9﹣3=6,
西巴巴数字7表示阿拉伯数字9﹣7=2,
西巴巴数字4表示阿拉伯数字9﹣4=5,
西巴巴数字2表示阿拉伯数字9﹣2=7,
所以837+742表示的正常算式为:
162+257=419.
故答案为:
419.
25.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:
奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.
解:
2007÷3=669,
又因为,每一个循环周期中有2个奇数,1个偶数,
所以前2007个数中偶数的个数是:
1×669=669;
答:
前2007个数中,有699是偶数.
故答案为:
699.
26.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.
解:
2008是第2008÷2=1004个数,
1004÷8=125…4,
说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.
故答案为:
4.
27.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:
①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:
1+2+4+8=15(种);
答:
一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:
15.
28.解:
通过有规律的数,得出:
(1)边长为1的正方形有4×3=12(个);
(2)边长为2的正方形有6个;
(3)边长为3的正方形有2个.
(4)以小正方形的对角线为边的正方形有8个;
(5)以对角线的一半为边长的正方形是17个;
(6)以3个对角线的一半为边长的正方形有1个.
所以图中共有正方形:
12+6+2+8+17+1=46(个).
答:
图中有46个正方形.
29.解:
如图:
连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②
三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,
阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半
16÷2=8
答:
阴影部分的面积是8.
故答案为:
8.
30.解:
先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:
他的年龄大于或等于18岁;
再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.
根据这两个范围可知可能是18、19、20、21的一个数.
又因为20、21无论是三次方还是四次方,它们的尾数分别都是:
0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.
只剩下18、19这两个数了.一个一个试,
18×18×18=5832,18×18×18×18=104976;
19×19×19=6859,19×19×19×19=130321;
符合要求是18.
故答案为:
18.
31.解:
如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知SABCM=SCDEN=SEFAK=
六边形面积,
根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,
△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,
=
,则
=
,
=
,由鸟头定理可知道3×KP×AP=RP×PQ,
综上可得:
PR=2KP=
RE,那么由三角形AEK是六边形面积的
,且S△APK=
S△AKE,
S△APK=
SABCDEF=47,所以阴影面积为47×3=141
故答案为141.
32.解:
(6+2)×[(5×6)÷2]
=8×15,
=120(个).
答:
小松鼠一共储藏了120个松果.
故答案为:
120.
33.解:
根据分析,AD=BE+EC=5+4=9,
AB=1+4=5,S△EFC=
×EC×FC=
×4×4=8;
S△ABE=
×AB×BE=
×5×5=12.5;
S△ADF=
×AD×DF=
×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.
S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:
20.
34.解:
行驶300米,甲车比乙车快2小时;
那么甲比乙快1小时,需要都行驶150米;
300﹣150=150(千米);
故答案为:
150
35.解:
38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,
因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;
经检验,只有26﹣12=14,14是7的倍数,
即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,
答:
小胖的生日是5月26日.
故答案为:
26.
36.解:
6×6÷2=18(平方厘米),
18×2÷8=4.5(厘米);
答:
OB长4.5厘米.
故答案为:
4.5.
37.解:
因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD的面积平分4份,平行四边形面积是240平方厘米,
所以S△DOC=240÷4=60(平方厘米),
又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,
所以S△ECF=
S△DOC=
×60=20(平方厘米),
所以阴影部分的面积是20平方厘米.
故答案为:
20.
38.解:
4×4×3,
=16×3,
=48(种);
答:
这五个数字可以组成48个不同的三位数.
故答案为:
48.
39.解:
第5小时开始时有:
164÷2+2=84(个)
第4小时开始时有:
84÷2+2=44(个)
第3小时开始时有:
44÷2+2=24(个)
第2小时开始时有:
24÷2+2=14(个)
第1小时开始时有:
14÷2+2=9(个)
答:
最开始的时候有9个细胞.
故答案为:
9.
40.解:
设哥哥跑了X分钟,则有:
(X+30)×80﹣110X=900,
80x+2400﹣110x=900,
2400﹣30x=900,
X=50;
110×50=5500(米);
答:
哥哥跑了5500米.
故答案为:
5500.