初一三角形习题精选.docx
《初一三角形习题精选.docx》由会员分享,可在线阅读,更多相关《初一三角形习题精选.docx(13页珍藏版)》请在冰豆网上搜索。
初一三角形习题精选
三角形
一、三角形:
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
如右图:
线段AB,BC,CA是三角形的边,点A,B,C是三角形的顶点,∠A,∠B,∠C是相邻两边组成的角,叫做三角形的内角,简称三角形的角,记作“△ABC”。
四、公式:
面积:
S=
×底×高周长:
C=a+b+c
五、多边形:
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
n边形:
如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
(三角形是最简单的多边形)
多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
凸多边形:
画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形叫做凸多边形。
正多边形:
各个角都相等,各条边都相等的多边形叫做正多边形。
n边形内角和等于(n-2)×180°
多边形的外角和等于360°
三角形概念及分类:
1、若△ABC三个内角的度数分别为m、n、p,且|m-n|+(n-p)2=0,则这个三角形为( )
A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形
2、试通过画图来判定,下列说法正确的是( )
A、一个直角三角形一定不是等腰三角形
B、一个等腰三角形一定不是锐角三角形
C、一个钝角三角形一定不是等腰三角形
D、一个等边三角形一定不是钝角三角形
3、如图所示,在△ABC中,∠ACB是钝角,让点C在射线BD上向右移动,则( )
A、△ABC将先变成直角三角形,然后再变成锐角三角形,而不会再是钝角三角形
B、△ABC将变成锐角三角形,而不会再是钝角三角形
C、△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形变为钝角三角形
D、△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形
4、下列说法中正确的是( )
A、三角形的内角中至少有两个锐角
B、三角形的内角中至少有两个钝角
C、三角形的内角中至少有一个直角
D、三角形的内角中至少有一个钝角
5、如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依次类推,则第6个图中共有三角形_个
6、如果一个三角形中最大的边所对的角是锐角,那么这个三角形一定是三角形
7、等边三角形的各个内角是度,等腰直角三角形的两个底角是度.
8、锐角三角形任意两锐角的和必大于.
9、观察下表中三角形个数变化规律,填表并回答下面问题.
问题:
如果图中三角形的个数是102个,则图中应有条横截线.
性质公式:
角
1、已知△ABC的一个外角为50°,则△ABC一定是( )
A、锐角三角形B、钝角三角形
C、直角三角形D、锐角三角形或钝角三角形
2、下列数据能唯一确定三角形的形状和大小的是( )
A、AB=4,BC=5,∠C=60°B、AB=6,∠C=60°,∠B=70°C、AB=4,BC=5,CA=10D、∠C=60°,∠B=70°,∠A=50°
3、将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )
A、45°B、60°C、75°D、85°
4、如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )
A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°
5、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为( )
A、70°B、80°C、90°D、100°
6、直线l1∥l2,∠1=40°,∠2=75°,则∠3等于( )
A、55°B、60°C、65°D、70°
7、如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=( )
A、15°B、20°C、25°D、30°
8、若一个三角形三个内角度数的比为2:
3:
4,那么这个三角形是( )
A、直角三角形B、锐角三角形C、钝角三角形D、等边三角形
9、如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )
A、40°B、30°C、20°D、10°
10、将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )
A、45°B、50°C、60°D、75°
11、如图,AD,BE都是△ABC的高,则与∠CBE一定相等的角是( )
A、∠ABEB、∠BADC、∠DACD、∠C
12、如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是( )
A、30°B、40°C、50°D、60°
13、在△ABC中,三个内角满足∠B-∠A=∠C-∠B,则∠B等于( )
A、70°B、60°C、90°D、120°
14、已知在三角形ABC中,∠A与∠C的度数比是5:
7,且∠B比∠A大10°,那么∠B为( )
A、40°B、50°C、60°D、70°
15、如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是( )
A、0<x<3B、x>3C、3<x<6D、x>6
16、如果三角形的两边分别为3和5,那么这个三角形的周长可能是( )
A、15B、16C、8D、7
17、在△ABC中,D为BC中点,则△ABD和△ACD面积的大小关系为( )
A、S△ABD>S△ACDB、S△ABD<S△ACDC、S△ABD=S△ACDD、无法确定
18、已知△ABC的面积为3,边BC长为2,以B原点,BC所在的直线为x轴,则点A的纵坐标为( )
A、3B、-3C、6D、±3
19、图1为两个相同的矩形,若阴影区域的面积为10,则图2的阴影面积等于( )
A、40B、30C、20D、10
20、如图,△ABC的三条中线AD、BE,CF交于点O,S阴影部分=4,则S△ABC=( )
A、8B、12C、16D、不能确定
21、如图,A(2,0),B(-2,3),AB交y轴于点P,已知:
S△OAP=1.5,则S△OBP=( )
A、1.5B、1C、2D、0.7
多边形:
1、如图,在△ABC中,高线BD,CE相交于点H,若∠A=60°,则∠BHC的度数是( )
A、60°B、90°C、120°D、150°
2、如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大小为( )
A、120°B、180°C、200°D、240°
3、如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )
A、这两个四边形面积和周长都不相同B、这两个四边形面积和周长都相同
C、这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长
D、这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长
4、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则下列结论一定正确的是( )
A、∠1+∠2=360°-2(∠B+∠C)B、∠1+∠2=180°-2(∠B+∠C)C、∠1+∠2=180°-(∠B+∠C)D、∠1+∠2=360°-12(∠B+∠C)
5、把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )
A、六边形B、五边形C、四边形D、三角形
6、一个正多边形,它的每一个外角都是45°,则该正多边形是( )
A、正六边形B、正七边形C、正八边形D、正九边形
7、一个多边形的内角和是720°,这个多边形的边数是( )
A、4B、5C、6D、7
8、若一个正多边形的每个内角为150°,则这个正多边形的边数是( )
A、12B、11C、10D、9
9、如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )
A、六边形B、五边形C、四边形D、三角形
10、正八边形的每个内角为( )
A、120°B、135°C、140°D、144°
11、一个多边形的内角和是900°,则这个多边形的边数是( )
A、6B、7C、8D、9
12、七边形内角和的度数是( )
A、1080°B、1260°C、1620°D、900°
13、如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A重合,若∠A=70°,则∠1+∠2=( )
A、140°B、130°C、110°D、70°
14、下列图形不具有稳定性的是( )
15、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.
16、如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.
17、如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°
(1)求∠DCA的度数;
(2)求∠ACE的度数.
18、已知:
如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:
∠ABE,∠ACF和∠BHC的度数.
19、如图,在△ABC中,∠ABC的角平分线和∠ACD的角平分线相交于点E,
(1)如果已知∠A=60°,∠ABC=50°,求∠E的大小.
(2)如果已知∠A=70°,∠ABC=60°,求∠E的大小.
(3)根据
(1)和
(2)的结论,试猜测一般情况下,∠E和∠A的大小关系,并说明理由.
20、如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.
(1)求点B的坐标,并画出△ABC;
(2)求△ABC的面积.
21、如图,△ABC中,高AD与CE的长分别为2cm,4cm,求AB与BC的比是多少?
22、如图,已知正方形ABOD的边长为4,点P为点A关于y轴的对称点.
(1)写出正方形ABOD的各顶点坐标.
(2)求△PDO的面积.