交通信号智能控制系统毕业设计.docx

上传人:b****8 文档编号:10932630 上传时间:2023-02-23 格式:DOCX 页数:48 大小:380.94KB
下载 相关 举报
交通信号智能控制系统毕业设计.docx_第1页
第1页 / 共48页
交通信号智能控制系统毕业设计.docx_第2页
第2页 / 共48页
交通信号智能控制系统毕业设计.docx_第3页
第3页 / 共48页
交通信号智能控制系统毕业设计.docx_第4页
第4页 / 共48页
交通信号智能控制系统毕业设计.docx_第5页
第5页 / 共48页
点击查看更多>>
下载资源
资源描述

交通信号智能控制系统毕业设计.docx

《交通信号智能控制系统毕业设计.docx》由会员分享,可在线阅读,更多相关《交通信号智能控制系统毕业设计.docx(48页珍藏版)》请在冰豆网上搜索。

交通信号智能控制系统毕业设计.docx

交通信号智能控制系统毕业设计

 

本科生毕业论文(设计)

 

题目:

交通信号智能控制系

统的研究与设计

学生姓名:

学号:

专业班级:

通信工程08102班

指导教师:

 

完成时间:

2012年5月10日

摘要

本文根据AT89C51单片机的特点及交通灯在实际控制中的特点,提出了一种用单片机自动控制交通灯以及时间显示的方法,同时给出了软硬件设计的方法。

设计的过程包括硬件电路设计和程序设计两大步骤,对在单片机应用中可能遇到的重要设计问题都有涉足。

本系统采用单片机作为核心控制器,通过红外检测系统来测量东西方向和南北方向的车流量大小,经过简单的算法得出红绿灯时间。

然后分别用红、黄、绿灯的不同组合来指挥两个方向的通车与禁行,用LED数码管作为倒计时指示,实时地控制当前交通灯时间使LED显示器进行倒计时工作并与状态灯保持同步,在保持交通安全的同时最大限度地提高交通能顺畅交替运行,从而实现十字路口的智能交通控制。

关键词:

单片机;交通灯;红外检测;智能控制

 

Abstract

AccordingtothecharacteristicsoftheAT89C51microcontrollerandthecharacteristicsoftrafficlightsintheactualcontrol,thepaperproposesakindofautomatictrafficlightswithasinglechipandmethodoftimedisplayandgivesthehardwareandsoftwaredesignmethods.Theprocessofdesignincludesthehardwarecircuitdesignandprogrammingtwosteps,andmightencounterimportantproblemsinthedesignofSCPapplication.ThesystemusestheSCMasthecorecontrollerandmeasurestheeast-westandnorth-southdirectionoftrafficflowsizethroughtheinfrareddetectionsystem.Thetimeoftrafficlightsiscalculatedthroughasimplealgorithm.Andcommandthedifferentcombinationsoftwodirectionandexcludetrafficwithred,yellow,andgreen.ThenusetheLEDdigitaltubeasthecountdowninstructions,real-timecontrolthetimeofthecountdowninstructionslet,makeLEDdisplaylightscountdownworkandkeeppacewiththestatelamp.Whilemaintainingsafety,maximizetrafficflowcanalternateoperation.Socrossroadsintelligenttrafficcontrolisimplemented.

Keywords:

SCM,Trafficlights,Infrareddetection,IntelligentControl

第1章绪论

1858年,在英国伦敦主要街头安装了以燃煤气为光源的红、蓝两色的机械扳手式信号灯,用以指挥马车通行,这是世界上最早的交通信号灯。

1918年,又出现了带控制的红绿灯和红外线红绿灯。

信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。

1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定:

绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。

左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。

红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。

黄灯是警告信号,面对黄灯的车辆不能越过停车线。

1.1研究意义

随着社会经济快速发展,汽车数量的急剧增加,给城市交通带来了极大的压力。

特别是在上下班高峰期,巨大的车流量使得道路拥挤,造成了不必要的时间浪费与经济损失。

由此可见,交通拥塞已成为一个国际性的问题。

因此,设计可靠、安全、便捷的智能交通灯控制系统有极大的现实必要性。

而社会上正在使用的交通控制系统主要有两个缺陷:

1、车道放行车辆时,时间设定相同且固定,十字路口经常出现主车道车辆多,放行时间短,车流无法在规定时间内通过,而副车道车辆少,放行时间明显过长;2、未考虑急车强通(例如,消防车执行紧急任务时,两车道都应等待消防车通过)。

由于交通信号灯控制系统缺乏有效的应急措施,导致十字路口交通受阻,造成不必要的经济损失。

本系统利用AT89C51单片机,实现了根据区域车流量、红外检测或者人为操作进行十字路口交通信号灯智能控制,并在软硬件方面采取一些改进措施,实现了根据十字路口车流、红外检测量进行交通信号灯智能控制,并且在紧急情况下,可以使用紧急按键使两路口都为红灯,让紧急车辆通过后再恢复正常通车,这样,交通信号灯现场控制灵活、有效,从一定程度上解决了交通路口堵塞、车辆停车等待时间不合理等问题,并可通过人为控制来解决紧急车辆强通问题。

该系统具有结构简单、可靠性高、成本低、实时性好、安装维护方便等优点,并且具有良好的扩展完善特点,有广泛的应用前景。

1.2交通灯研究现状

1.2.1国内城市交通现状

汽车进入家庭步伐的加快和城市汽车数量的增多,城市道路交通问题显得越来越重要。

我们在马路上经常会看到这种现象:

一旦整个路口的交通信号灯出现故障,若没有交警的及时疏导,该路口就会塞得一塌糊涂。

原交通信号控制大都采用继电器实现,存在着功能少、可靠性差、维护量大等缺点,越来越不能适应城市道路交通高速发展的要求。

另外,根据人车流量的多少,可能随时增加路口的交通信号,比如增加转弯或人行道交通信号,原有系统的制约性就更明显了。

交通问题在现在乃至将来的一段时间内仍是制约国内各大中城市发展的主要问题之一。

以北京为例,“开车没有骑车快,坐车没有走路快”,这种现象在北京交通高峰时段已是见怪不怪。

当年,奥委会在《申办城市手册》中谈到交通问题时指出:

“成功举办奥运会的关键因素是要有一个有效的交通系统”,而“北京正面临着经济发展和城市快速扩展而产生的交通需求挑战”,从而可见一个有效的先进的交通系统的重要性。

目前各城市都在不断改善交通设施,改进各十字路口交通灯控制方式,都得到了很好的效果。

1.2.2国际先进成果

智能控制交通系统是目前研究的方向,也已经取得不少成果,在少数几个先进国家已采用智能方式来控制交通信号,其中主要运用GPS全球定位系统等。

出于便捷和效果的综合考虑,可以制作传感器探测车辆数量来控制交通灯的时长。

具体如下:

在入路口的各个方向附近的地下按要求埋设感应线圈,当汽车经过时就会产生涡流损耗,环状绝缘电线的电感开始减少,即可检测出汽车的通过,并将这一信号转换为标准脉冲信号作为单片机的控制输入,并用单片机的计数器计数,按一定控制规律自动调节红绿灯的时长。

比较传统的定时交通灯控制与智能交通灯控制,可知后者的最大优点在于减缓滞流现象,也不会出现空道占时的情形,提高了公路交通通行率。

目前,基于单片机的智能交通系统在国内外还处于研究发展阶段,但已取得了很大的研究成果,得到了丰富的理论知识。

第2章总体方案设计

2.1方案的比较与选择

2.1.1方案的比较

方案一:

基于PLC的交通智能控制系统

本系统利用EPM240TC100C5核心板控制模块为核心控制部件,加入振荡电路、车流量检测电路、紧急按键电路、红绿灯显示电路以及倒计时显示电路组成功系统,实现对十字路口交通信号灯的智能控制,系统基本原理框图如图2.1所示:

图2.1基于PLC的交通智能控制系统基本原理框图

方案二:

基于单片机的交通信号智能控制系统

本系统利用AT89C51单片机作为系统的核心控制部件,利用其定时器/计数器作为红外传感器的接收端,通过高低电平的变化来统计通过检测区域的车流量,然后通过软件计时来控制接在P0端口的红绿灯的点亮与熄灭状态,并在8段数码管(接在P1和P2端口)上显示倒计时。

系统的电路图主要由电源电路、遮光式红外传感器检测电路、红绿灯显示电路、红绿灯时间倒计时电路以及紧急按键K1电路等电路组成。

系统的基本原理框图如图2.2所示:

图2.2基于单片机的交通信号智能控制系统框图

2.1.2方案的选择

由于该设计的系统比较简单,单片机完全能胜任该设计,而且从经济角度来说,单片机更为便宜,且本人所学知识有限对于单片机更加熟悉,所以决定采用方案二来完成本次设计。

为了实现了根据区域车流量、红外检测或者人为操作进行十字路口交通信号灯智能控制,并在软硬件方面采取一些改进措施,实现了根据十字路口车流、红外检测量进行交通信号灯智能控制,这样,交通信号灯现场控制灵活、有效,从一定程度上解决了交通路口堵塞、车辆停车等待时间不合理等问题。

本文是采用了以AT89C51单片机为核心的控制方案。

方案中通过遮光式的红外传感器来检测东西方向和南北方向的车流量大小,再经过一定的简单算法算出各方向上的红绿灯时间并在数码管显示器上显示倒计时,同时通过路口上的红绿灯的点亮与熄灭控制车辆的通行与停止。

另外,方案中还设计一个紧急车辆通行按键,每当有紧急车辆需要通过时,操作员按下按键,东西方向和南北方向上均为红灯,并发出警报禁止普通车辆的通行,先让紧急车辆通过。

东西、南北两干道交于一个十字路口,各干道有一组红、黄、绿三色的指示灯,指挥车辆安全通行。

红灯亮禁止通行,绿灯亮允许通行。

黄灯亮提示人们注意红、绿灯的状态即将切换,且黄灯燃亮时间为东西、南北两干道的公共停车时间,指示灯燃亮的方案如表2.1。

表2.1指示灯的燃亮方案表

(T1-3)s

3s

(T2-3)s

3s

……

东西道

红灯亮

黄灯亮

绿灯亮

黄灯亮

……

南北道

绿灯亮

黄灯亮

红灯亮

黄灯亮

……

表2.1说明:

(1)当东西方向为红灯,此道车辆禁止通行;南北道为绿灯,此道车辆通过。

时间为(T1-3)秒。

(2)黄灯闪烁3秒,警示车辆红、绿灯的状态即将切换。

(3)当东西方向为绿灯,此道车辆通行;南北方向为红灯,南北道车辆禁止通过。

时间为(T2-3)秒。

(4)这样如上表的时间和红、绿、黄出现的顺序依次出现这样车辆就能安全畅通的通行。

另外,在紧急情况下,操作员可以通过紧急按键K1,使两路口均是红灯,禁止普通车辆通行,先让紧急车辆(例如救护车等)通过。

注:

时间T1和T2均由红外传感器检测电路测的。

另外,在交通灯的燃亮指示表中,东西(南北)方向绿灯的点亮时间为(T1-3)(南北方向绿灯为(T2-3)),这是因为循环时间段T1(T2)包括绿灯和黄灯的时间,扣除的3秒钟为黄灯的点亮时间,所以从时间段T1(T2)扣除黄灯的3秒钟即为东西方向的绿灯点亮时间(南北方向的绿灯点亮时间)。

第3章系统硬件设计

本系统利用AT89C51单片机作为系统的核心控制部件,利用其定时器/计数器作为红外传感器的接收端,通过高低电平的变化来统计通过检测区域的车流量,然后通过软件计时来控制接在P0端口的红绿灯的点亮与熄灭状态,并在8段数码管(接在P1和P2端口)上显示倒计时。

系统的电路图主要由电源电路、热释电红外传感器检测电路、红绿灯显示电路、红绿灯时间倒计时电路以及紧急按键K1电路等电路组成。

系统的基本原理框图如图3.1所示:

图3.1系统的基本原理框图

下面从各个电路分别加以说明,首先介绍一下单片机。

3.1单片机概述

单片机也被称为微控制器(Microcontroller),最早被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

  早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTELi960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

  单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

事实上单片机是世界上数量最多的计算机。

现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。

而个人电脑中也会有为数不少的单片机在工作。

汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!

单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。

  单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。

概括的讲:

一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

同时,学习使用单片机是了解计算机原理与结构的最佳选择。

本文中使用的AT89C51单片机是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。

8951单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线[5],现在我们分别加以说明:

·中央处理器:

中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。

·数据存储器(RAM):

8951内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。

·程序存储器(ROM):

8951共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。

·定时/计数器(ROM):

8951有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。

·并行输入输出(I/O)口:

8951共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。

·全双工串行口:

8951内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

·中断系统:

8951具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。

·时钟电路:

8951内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8951单片机需外置振荡电容。

AT89C51单片机的外形结构为40条引脚双列直插式封装,下面是单片机的引脚图,以及简单的管脚说明:

图3.2单片机的引脚图

VCC(40脚):

供电电压。

GND(20脚):

接地。

XTAL1(19脚):

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2(18脚):

来自反向振荡器的输出。

振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

RST(9脚):

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG(30脚):

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN(29脚):

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP(31脚):

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

P0口(32-39脚):

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口(1-8脚):

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口(21-28脚):

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口(10-17脚):

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

P3口管脚备选功能

P3.0(10脚):

RXD(串行输入口)

P3.1(11脚):

TXD(串行输出口)

P3.2(12脚):

/INT0(外部中断0)

P3.3(13脚):

/INT1(外部中断1)

P3.4(14脚):

T0(记时器0外部输入)

P3.5(15脚):

T1(记时器1外部输入)

P3.6(16脚):

/WR(外部数据存储器写选通)

P3.7(17脚):

/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

3.2电源电路

电源采用输出为正5V直流电压的稳压电源电路。

IC采用集成稳压器7805三端稳压器。

它是一种标准化、系列化的通用线性稳压电源集成电路,以其体积小、成本低、性能好、工作可靠性高、使用简捷方便等特点,成为目前稳压电源中应用最为广泛的一种单片式集成稳压器件。

当输出电流较大时,7805应配上散热板。

C3为输入端滤波电容,C5为输出端滤波电容。

如图3.3所示:

图3.3电源电路

本系统采用220V交流电电源,经过5V适配器滤波后,在固定式三端稳压器LM7805的Vin和GND两端形成一个并不十分稳定的直流电压(该电压常常会因为市电电压的波动或负载的变化等原因而发生变化)。

此直流电压经过LM7805的稳压和电容的滤波便在稳压电源的输出端产生了精度高、稳定度好的直流输出电压。

3.3检测电路

检测电路是本系统能够实现智能控制红绿灯时间的关键。

检测电路的核心是红外传感器,下面首先对红外传感器做一个简单地介绍:

3.3.1红外传感器的发展

传感器被定义为能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。

红外传感器是利用物体产生红外辐射的特性,实现自动检测的传感器。

在物理学中,我们就已经知道可见光、不可见光、红外光及无线电[5]等都是电磁波,它们之间的差别只是波长(或频率)的不同而已。

红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。

红外传感系统是利用红外线为介质的测量系统,按照功能能够分成五类:

(1)辐射计,用于辐射和光谱测量;

(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。

红外传感器根据探测机理可分成为:

光子探测器[8](基于光电效应)和热探测器[8](基于热效应)。

3.3.2常用的红外传感器

(1)红外探测器

红外系统的核心是红外探测器,按照探测的机理不同,可以分为热探测器和光子探测器两大类。

热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。

检测其中某一性能的变化,便可探测出辐射。

多数情况下是通过热点变化来探测辐射的。

当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。

(2)红外测温产品:

HEITRONICS拥有40多年非接触红外测温经验,50多种红外测温仪和非接触红外测温系统可满足不同行业用户的特殊需求,提供最优非接触红外测温解决方案。

在高性能和高品质的红外测温产品市场,来自德国的HEITRONICS以其在尖端领域应用中良好的品质记录,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1