黄金分割专项练习30题.docx

上传人:b****7 文档编号:10728577 上传时间:2023-02-22 格式:DOCX 页数:30 大小:183.61KB
下载 相关 举报
黄金分割专项练习30题.docx_第1页
第1页 / 共30页
黄金分割专项练习30题.docx_第2页
第2页 / 共30页
黄金分割专项练习30题.docx_第3页
第3页 / 共30页
黄金分割专项练习30题.docx_第4页
第4页 / 共30页
黄金分割专项练习30题.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

黄金分割专项练习30题.docx

《黄金分割专项练习30题.docx》由会员分享,可在线阅读,更多相关《黄金分割专项练习30题.docx(30页珍藏版)》请在冰豆网上搜索。

黄金分割专项练习30题.docx

黄金分割专项练习30题

黄金分割专项练习30题(有答案)

2

1.定义:

如图1,点C在线段AB上,若满足AC=BC?

AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.

1)求证:

点D是线段AC的黄金分割点;

2)求出线段AD的长.

 

2.如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).

4.作一个等腰三角形,使得腰与底之比为黄金比.

(1)尺规作图并保留作图痕迹;

(2)写出你的作法;

(3)证明:

腰与底之比为黄金比.

5.

(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;

(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.

6.如图,线段AB的长度为1.

2

(1)线段AB上的点C满足系式AC2=BC?

AB,求线段AC的长度;

(选做)

(2)线段AC上的点D满足关系式AD2=CD?

AC,求线段AD的长度;

2

(选做)(3)线段AD上的点E满足关系式AE2=DE?

AD,求线段AE的长度;上面各题的结果反映了什么规律?

(提示:

在每一小题中设x和l)

7.如图,在△ABC中,AB=AC,∠A=36°,∠1=∠2,请问点D是不是线段AC的黄金分割点.请说明理由.

8.在△ABC中,AB=AC=2,BC=﹣1,∠A=36°,BD平分∠ABC,交于AC于D.试说明点D是线段AC的黄金分割点.

9.在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,

如在矩形ABCD中,当

时,称矩形ABCD

为黄金矩形ABCD.请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.

 

10.如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.

为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?

请试一试,说一说.

 

11.如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:

(1)AD=BD=BC;

(2)点D是线段AC的黄金分割点.

12.已知AB=2,点C是AB的黄金分割线,点D在AB上,且AD2=BD?

AB,求的值.

13.如果一个矩形ABCD(AB

黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?

请说明你

 

14.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD

的长.

15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为0.618时,是比较好看的黄

金身段.一个身高1.70m的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?

16.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.

(1)求AM,DM的长;

(2)点M是AD的黄金分割点吗?

为什么?

17.如图,点P是线段AB的黄金分割点,且AP>BP,设以AP为边长的正方形面积为S1,以PB为宽和以AB为长的矩形面积为S2,试比较S1与S2的大小.

18.如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,

BE交DC于点F,已知,求CF的长.

 

19.图1是一张宽与长之比为的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的

折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?

若是,请根据图2证明你的结论;若不是,请说明理由.

 

20.(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的

黄金分割点,设=k,则k就是黄金比,并且k≈0.618.

(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:

满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:

(2)如图1,设AB=1,请你说明为什么k约为0.618;

(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:

直线l将一个面积为S的

图形分成面积为S1和面积为S2的两部分(设S1

3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?

请说明理由;

(4)图3中的△ABC的黄金分割线有几条?

21.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618,越给人

以美感.张女士原来脚底到肚脐的长度与身高的比为0.60,她的身高为1.60m,她应该选择多高的高跟鞋穿上看起

来更美?

(精确到十分位)

22.已知线段AB,按照如下的方法作图:

以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?

请说明理由.

23.如图,用纸折出黄金分割点:

裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠

使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.

24.如图,用纸折出黄金分割点:

裁一张边长为2的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然

后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB.类似的,在AB上折出点M使AM=AF.则

 

25.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.

(1)求∠B的度数;

(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.

1写出图中所有的黄金三角形,选一个说明理由;

2求AD的长;

3在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?

若存在,在备用图中画出点P,简

说明理由.

26.宽与长的比是的矩形叫黄金矩形.心理测试表明:

黄金矩形令人赏心悦目,它给我们以协调,匀称的美

感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):

第一步:

作一个正方形ABCD;

第二步:

分别取AD,BC的中点M,N,连接MN;

第三步:

以N为圆心,ND长为半径画弧,交BC的延长线于E;

第四步:

过E作EF⊥AD,交AD的延长线于F.

请你根据以上作法,证明矩形DCEF为黄金矩形.

27.在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.

(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金

三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:

两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.

(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM与AB之间的数量关系?

只需说明结果,不用证明.

答:

CM与AB之间的数量关系是.

 

28.折纸与证明﹣﹣﹣用纸折出黄金分割点:

第一步:

如图

(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.第二步:

如图

(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)

29.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:

AB=AC,且∠A=36°.

(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);

(2)△BCD是不是黄金三角形?

如果是,请给出证明;如果不是,请说明理由;

(3)设,试求k的值;

的值.

4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出

 

30.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:

直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:

在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?

为什么?

(2)请你说明:

三角形的中线是否也是该三角形的黄金分割线?

(3)研究小组在进一步探究中发现:

过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.

(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD

 

黄金分割专项练习30题参考答案:

1.

(1)证明:

∵AB=AC=1,

∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,

∵BD平分∠ABC交AC于点D,

∴∠ABD=∠CBD=∠ABC=36°,

∴∠BDC=180°﹣36°﹣72°=72°,

∴DA=DB,BD=BC,

∴AD=BD=BC,易得△BDC∽△ABC,

2

∴BC:

AC=CD:

BC,即BC2=CD?

AC,

2

∴AD2=CD?

AC,

∴点D是线段AC的黄金分割点;

(2)设AD=x,则CD=AC﹣AD=1﹣x,

2

∵AD2=CD?

AC,

2

∴x2=1﹣x,解得x1=,x2=,

即AD的长为

2.解:

(1)设AB=xcm,则AD=(20﹣x)cm,

根据题意得x(20﹣x)=99,

整理得x2﹣20x+99=0,解得x1=9,x2=11,

当x=9时,20﹣x=11;当x=11时,20﹣11=9,

而AB>AD,

所以x=11,即AB的长为11cm;

(2)不能.理由如下:

设AB=xcm,则AD=(20﹣x)cm,根据题意得x(20﹣x)=101,

2

整理得x2﹣20x+101=0,

因为△=202﹣4×101=﹣4<0,所以方程没有实数解,

所以这个矩形的面积可能等于101cm2;

(3)设AB=xcm,则AD=(20﹣x)cm,

根据题意得20﹣x=x,

解得x=10(﹣1),

则20﹣x=10(3﹣),

所以矩形的面积=10(﹣1)?

10(3﹣)=(400﹣800)cm2.3.解:

(1)∵∠A=36°,AB=AC,

∴∠ABC=∠ACB=72°,

∵BD平分∠ABC,

∴∠CBD=∠ABD=36°,∠BDC=72°,

∴AD=BD,BC=BD,

∴△ABC∽△BDC,

∴=,即=,

2

∴AD=AC?

CD.

∴点D是线段AC的黄金分割点.

(2)∵点D是线段AC的黄金分割点,

∵AC=2,

∴AD=﹣14.解:

(1)腰与底之比为黄金比为黄金比如图,

(2)作法:

①画线段AB作为三角形底边;

②取AB的一半作AB的垂线AC,连接BC,在BC上取CD=CA.

③分别以A点和B点为圆心、以BD为半径划弧,交点为E;

4分别连接EA、EB,则△ABE即是所求的三角形.

(3)证明:

设AB=2,则AC=1,BC=,AE=BE=BD=BC﹣CD=﹣1,=.

=.

5.解:

(1)由于P为线段AB=2的黄金分割点,则AP=2×=﹣1,

或AP=2﹣(﹣1)=3﹣;

2)如图,点P是线段AB的一个黄金分割点.

6.解:

(1)设AC=x,则BC=AB﹣AC=1﹣x,2

∵AC2=BC?

AB,

2∴x=1×(1﹣x),

2整理得x2+x﹣1=0,

解得x1=,x2=(舍去),

(2)设线段AD的长度为x,AC=l,

2

∵AD=CD?

AC,

2

∴x=l×(l﹣x),

∴x1=,x2=(舍去),

∴线段AD的长度AC;

(3)同理得到线段AE的长度AD;

上面各题的结果反映:

若线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:

AC=AC:

BC),则C点为AB的黄金分割点

7.解:

D是AC的黄金分割点.理由如下:

∵在△ABC中,AB=AC,∠A=36°,

∴∠ABC=∠ACB==72°.

∵∠1=∠2,

∴∠1=∠2=∠ABC=36°.

∴在△BDC中,∠BDC=180°﹣∠2﹣∠C=72°,

∴∠C=∠BDC,

∴BC=BD.

∵∠A=∠1,

∴AD=BC.

∵△ABC和△BDC中,∠2=∠A,∠C=∠C,

∴△ABC∽△BDC,

∴,

∴,

又∵AB=AC,AD=BC=BD,

∴,

∴,

2

∴AD2=AC?

CD,即D是AC的黄金分割点

8.证明:

∵AB=AC,∠A=36°,

∴∠ABC=(180°﹣36°)=72°,

∵BD平分∠ABC,交于AC于D,

∴∠DBC=×∠ABC=×72°=36°,

∴∠A=∠DBC,

又∵∠C=∠C,

∴△BCD∽△ABC,

∵AB=AC,

∴=,

=

∵AB=AC=2,BC=﹣1,

∴(﹣1)2=2×(2﹣AD),解得AD=,

AD:

AC=():

2.

∴点D是线段AC的黄金分割点.

9.证明:

在AB上截取AE=BC,DF=BC,连接EF.∵AE=BC,DF=BC,

∴AE=DF=BC=AD,又∵∠ADF=90°,∴四边形AEFD是正方形.

BE=,

∴,

∴,

∴,

∴矩形BCFE的宽与长的比是黄金分割比,矩形BCFE是黄金矩形.∴黄金矩形是由一个正方形和一个更小的黄金矩形构成.

10.解:

设正方形ABCD的边长为2,

在Rt△AEB中,依题意,得AE=1,AB=2,由勾股定理知EB===,

∴AH=AF=EF﹣AE=EB﹣AE=﹣1,

HB=AB﹣AH=3﹣;

∴AH2=()2=6﹣2,

AB?

HB=2×(3﹣)=6﹣2,

2

∴AH=AB?

HB,

所以点H是线段AB的黄金分割点.11.证明:

(1)∵∠A=36°,∠C=72°,

∴∠ABC=180°﹣36°﹣72°=72°,

∵∠ADB=108°,

∴∠ABD=180°﹣36°﹣108°=36°,

∴△ADB是等腰三角形,

∵∠BDC=180°﹣∠ADC=180°﹣108°=72°,

∴△BDC是等腰三角形,

∴AD=BD=BC.

(2)∵∠DBC=∠A=36°,∠C=∠C,

∴△ABC∽△BDC,

∴BC:

AC=CD:

BC,

2

∴BC=AC?

DC,

∵BC=AD,

2

∴AD2=AC?

DC,

∴点D是线段AC的黄金分割点.

2

12.解:

∵D在AB上,且AD=BD?

AB,

∴点D是AB的黄金分割点

而点C是AB的黄金分割点,

∴AC=AB=﹣1,AD=AB﹣AB=AB=3﹣或AD=﹣1,AC=3﹣,

∴CD=﹣1﹣(3﹣)=2﹣4,

∴==或==.

13.解:

矩形ABFE是黄金矩形.

∵AD=BC,DE=AB,

∴==﹣1==.

∴==﹣1==.

∴矩形ABFE是黄金矩形.

 

14.解:

∵D为AB的黄金分割点

AD>BD),

∴AD=

AB=10﹣10,

 

∵EC+CD=AC+CD=AD,∴EC+CD=(10﹣10)cm.15.解:

设他的肚脐到脚底的长度为xm时才是黄金身段,

根据题意得x:

1.70=0.618,

即x=1.70×0.618≈1.1(m).答:

他的肚脐到脚底的长度为1.1m时才是黄金身段.

16.解:

(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,

DM=AD﹣AM=3﹣.

故AM的长为﹣1,DM的长为3﹣;

(2)点M是AD的黄金分割点.

由于=,

由于=,

∴点M是AD的黄金分割点.

17.解:

∵点P是线段AB的黄金分割点,且AP>BP,

2

∴AP=BP×AB,

2

又∵S1=AP,S2=PB×AB,

∴S1=S2.

18.解:

∵四边形ABCD为平行四边形,

∴∠CBF=∠AEB,∠BCF=∠BAE,

∴△BCF∽△EAB,

∴,即,

∴,即,

把AD=,AB=+1代入得,=,解得:

CF=2.

故答案为:

2.

19.解:

矩形EFDC是黄金矩形,

证明:

∵四边形ABEF是正方形,

∴AB=DC=AF,

又∵,

又∵,

∴,

∴,

∴,

即点F是线段AD的黄金分割点.

∴,

∴,

∴,

∴,

∴矩形CDFE是黄金矩形.

20.解:

(1)满足

≈0.618

≈0.618

的矩形是黄金矩形;

2)由=k得,BP=1×k=k,从而AP=1﹣k,

由得,BP2=AP×AB,

2

即k=(1﹣k)×1,

解得k=

∵k>0,

∴k=≈0.618;

3)因为点P是线段AB的黄金分割点,所以

设△ABC的AB上的高为h,则

∴直线CP是△ABC的黄金分割线.

(4)由

(2)知,在BC边上也存在这样的黄金分割点Q,则AQ也是黄金分割线,设AQ与CP交于点W,则过点W的直线均是△ABC的黄金分割线,故黄金分割线有无数条.

21.解:

根据已知条件得下半身长是160×0.6=96cm,

设选择的高跟鞋的高度是xcm,则根据黄金分割的定义得:

=0.618,

解得:

x≈7.5cm.

故她应该选择7.5cm左右的高跟鞋穿上看起来更美.22.解:

设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB==a,

∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,

HB=AB﹣AH=(3﹣)a;

∴AH2=(6﹣2)a2,

AB?

HB=2a×(3﹣)a=(6﹣2)a2,

2

∴AH=AB?

HB,

所以点H是线段AB的黄金分割点.

23.证明:

设正方形ABCD的边长为2,

E为BC的中点,

∴BE=1

∴AE==,

又∵B′E=BE=1,

∴AB′=AE﹣B′E=﹣1,

∴AB″

∴点B″是线段AB的黄金分割点.

24.证明:

∵正方形ABCD的边长为2,E为BC的中点,∴BE=1

∴AE==,∵EF=BE=1,

∴AF=AE﹣EF=﹣1,

∴AM=AF=﹣1,

∴AM:

AB=(﹣1):

2,

∴点M是线段AB的黄金分割点.

25.解:

(1)∵BD=DC=AC.

则∠B=∠DCB,∠CDA=∠A.

设∠B=x,则∠DCB=x,∠CDA=∠A=2x.

又∠BOC=108°,

∴∠B+∠A=108°.

∴x+2x=108,x=36°.

∴∠B=36°;

(2)①有三个:

△BDC,△ADC,△BAC.

∵DB=DC,∠B=36°,

∴△DBC是黄金三角形,

(或∵CD=CA,∠ACD=180°﹣∠CDA﹣∠A=36°.

∴△CDA是黄金三角形.或∵∠ACE=108°,

∴∠ACB=72°.又∠A=2x=72°,

∴∠A=∠ACB.

∴BA=BC.

∴△BAC是黄金三角形.

②△BAC是黄金三角形,

∴,

∴,

∵BC=2,∴AC=﹣1.

∵BA=BC=2,BD=AC=﹣1,

∴AD=BA﹣BD=2﹣(﹣1)=3﹣,

③存在,有三个符合条件的点P1、P2、P3.

ⅰ)以CD为底

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 金融投资

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1