Matlab 常用图像函数.docx

上传人:b****7 文档编号:10570813 上传时间:2023-02-21 格式:DOCX 页数:23 大小:39.32KB
下载 相关 举报
Matlab 常用图像函数.docx_第1页
第1页 / 共23页
Matlab 常用图像函数.docx_第2页
第2页 / 共23页
Matlab 常用图像函数.docx_第3页
第3页 / 共23页
Matlab 常用图像函数.docx_第4页
第4页 / 共23页
Matlab 常用图像函数.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

Matlab 常用图像函数.docx

《Matlab 常用图像函数.docx》由会员分享,可在线阅读,更多相关《Matlab 常用图像函数.docx(23页珍藏版)》请在冰豆网上搜索。

Matlab 常用图像函数.docx

Matlab常用图像函数

Matlab常用图像函数

一图像的读写

1imread

imread函数用于读入各种图像文件,如:

a=imread('e:

\w01.tif')

注:

计算机E盘上要有w01相应的.tif文件。

2imwrite

imwrite函数用于写入图像文件,如:

imwrite(a,'e:

\w02.tif',’tif’)

3imfinfo

imfinfo函数用于读取图像文件的有关信息,如:

imfinfo('e:

\w01.tif')

二图像的显示

1image

image函数是MATLAB提供的最原始的图像显示函数,如:

a=[1,2,3,4;4,5,6,7;8,9,10,11,12];

image(a);

2imshow

imshow函数用于图像文件的显示,如:

i=imread('e:

\w01.tif');

imshow(i);

3colorbar

colorbar函数用显示图像的颜色条,如:

i=imread('e:

\w01.tif');

imshow(i);

colorbar;

4figure

figure函数用于设定图像显示窗口,如:

figure

(1);/figure

(2);

三图像的变换

1fft2

fft2函数用于数字图像的二维傅立叶变换,如:

i=imread('e:

\w01.tif');

j=fft2(i);

2ifft2

ifft2函数用于数字图像的二维傅立叶反变换,如:

i=imread('e:

\w01.tif');

j=fft2(i);

k=ifft2(j);

3利用fft2计算二维卷积

利用fft2函数可以计算二维卷积,如:

a=[8,1,6;3,5,7;4,9,2];

b=[1,1,1;1,1,1;1,1,1];

a(8,8)=0;

b(8,8)=0;

c=ifft2(fft2(a).*fft2(b));

c=c(1:

5,1:

5);

利用conv2(二维卷积函数)校验,如:

a=[8,1,6;3,5,7;4,9,2];

b=[1,1,1;1,1,1;1,1,1];

c=conv2(a,b);

四模拟噪声生成函数和预定义滤波器

1imnoise

imnoise函数用于对图像生成模拟噪声,如:

i=imread('e:

\w01.tif');

j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声

2fspecial

fspecial函数用于产生预定义滤波器,如:

h=fspecial('sobel');%sobel水平边缘增强滤波器

h=fspecial('gaussian');%高斯低通滤波器

h=fspecial('laplacian');%拉普拉斯滤波器

h=fspecial('log');%高斯拉普拉斯(LoG)滤波器

h=fspecial('average');%均值滤波器

五图像的增强

1直方图

imhist函数用于数字图像的直方图显示,如:

i=imread('e:

\w01.tif');

imhist(i);

2直方图均化

histeq函数用于数字图像的直方图均化,如:

i=imread('e:

\w01.tif');

j=histeq(i);

3对比度调整

imadjust函数用于数字图像的对比度调整,如:

i=imread('e:

\w01.tif');

j=imadjust(i,[0.3,0.7],[]);

4对数变换

log函数用于数字图像的对数变换,如:

i=imread('e:

\w01.tif');

j=double(i);

k=log(j);

5基于卷积的图像滤波函数

filter2函数用于图像滤波,如:

i=imread('e:

\w01.tif');

h=[1,2,1;0,0,0;-1,-2,-1];

j=filter2(h,i);

6线性滤波

利用二维卷积conv2滤波,如:

i=imread('e:

\w01.tif');

h=[1,1,1;1,1,1;1,1,1];

h=h/9;

j=conv2(i,h);

7中值滤波

medfilt2函数用于图像的中值滤波,如:

i=imread('e:

\w01.tif');

j=medfilt2(i);

8锐化

(1)利用Sobel算子锐化图像,如:

i=imread('e:

\w01.tif');

h=[1,2,1;0,0,0;-1,-2,-1];%Sobel算子

j=filter2(h,i);

(2)利用拉氏算子锐化图像,如:

i=imread('e:

\w01.tif');

j=double(i);

h=[0,1,0;1,-4,0;0,1,0];%拉氏算子

k=conv2(j,h,'same');

m=j-k;

六举例

二维傅立叶变换和二维傅立叶反变换:

i=imread('e:

\w01.tif');

figure

(1);

imshow(i);

colorbar;

j=fft2(i);

k=fftshift(j);

figure

(2);

l=log(abs(k));

imshow(l,[]);

colorbar

n=ifft2(j)/255;

figure(3);

imshow(n);

colorbar;

Matlab中图像函数大全

图像增强

1.直方图均衡化的Matlab实现

1.1imhist函数

功能:

计算和显示图像的色彩直方图

格式:

imhist(I,n)

       imhist(X,map)

说明:

imhist(I,n)其中,n为指定的灰度级数目,缺省值为256;imhist(X,map)就算和显示索引色图像X的直方图,map为调色板。

stem(x,counts)同样可以显示直方图。

1.2imcontour函数

功能:

显示图像的等灰度值图

格式:

imcontour(I,n),imcontour(I,v)

说明:

n为灰度级的个数,v是有用户指定所选的等灰度级向量。

1.3imadjust函数

功能:

通过直方图变换调整对比度

格式:

J=imadjust(I,[lowhigh],[bottomtop],gamma)

       newmap=imadjust(map,[lowhigh],[bottomtop],gamma)

说明:

J=imadjust(I,[lowhigh],[bottomtop],gamma)其中,gamma为校正量r,[lowhigh]为原图像中要变换的灰度范围,[bottomtop]

指定了变换后的灰度范围;newmap=imadjust(map,[lowhigh],[bottomtop],gamma)调整索引色图像的调色板map。

此时若[lowhigh]和

[bottomtop]都为2×3的矩阵,则分别调整R、G、B3个分量。

1.4histeq函数

功能:

直方图均衡化

格式:

J=histeq(I,hgram)

       J=histeq(I,n)

       [J,T]=histeq(I,...)

       newmap=histeq(X,map,hgram)

       newmap=histeq(X,map)

       [new,T]=histeq(X,...)

说明:

J=histeq(I,hgram)实现了所谓“直方图规定化”,即将原是图象I的直方图变换成用户指定的向量hgram。

hgram中的每一个元素

都在[0,1]中;J=histeq(I,n)指定均衡化后的灰度级数n,缺省值为64;[J,T]=histeq(I,...)返回从能将图像I的灰度直方图变换成

图像J的直方图的变换T;newmap=histeq(X,map)和[new,T]=histeq(X,...)是针对索引色图像调色板的直方图均衡。

2.噪声及其噪声的Matlab实现

       imnoise函数

格式:

J=imnoise(I,type)

       J=imnoise(I,type,parameter)

说明:

J=imnoise(I,type)返回对图像I添加典型噪声后的有噪图像J,参数type和parameter用于确定噪声的类型和相应的参数。

3.图像滤波的Matlab实现

3.1conv2函数

功能:

计算二维卷积

格式:

C=conv2(A,B)

       C=conv2(Hcol,Hrow,A)

       C=conv2(...,'shape')

说明:

对于C=conv2(A,B),conv2的算矩阵A和B的卷积,若[Ma,Na]=size(A),[Mb,Nb]=size(B),则size(C)=[Ma+Mb-1,Na+Nb-1];

C=conv2(Hcol,Hrow,A)中,矩阵A分别与Hcol向量在列方向和Hrow向量在行方向上进行卷积;C=conv2(...,'shape')用来指定conv2

返回二维卷积结果部分,参数shape可取值如下:

       》full为缺省值,返回二维卷积的全部结果;

       》same返回二维卷积结果中与A大小相同的中间部分;

       valid返回在卷积过程中,未使用边缘补0部分进行计算的卷积结果部分,当size(A)>size(B)时,size(C)=[Ma-Mb+1,Na-Nb+1]

3.2conv函数

功能:

计算多维卷积

格式:

与conv2函数相同

3.3filter2函数

功能:

计算二维线型数字滤波,它与函数fspecial连用

格式:

Y=filter2(B,X)

       Y=filter2(B,X,'shape')

说明:

对于Y=filter2(B,X),filter2使用矩阵B中的二维FIR滤波器对数据X进行滤波,结果Y是通过二维互相关计算出来的,其大

小与X一样;对于Y=filter2(B,X,'shape'),filter2返回的Y是通过二维互相关计算出来的,其大小由参数shape确定,其取值如下

       》full返回二维相关的全部结果,size(Y)>size(X);

       》same返回二维互相关结果的中间部分,Y与X大小相同;

       》valid返回在二维互相关过程中,未使用边缘补0部分进行计算的结果部分,有size(Y)

3.4fspecial函数

功能:

产生预定义滤波器

格式:

H=fspecial(type)

       H=fspecial('gaussian',n,sigma)        高斯低通滤波器

       H=fspecial('sobel')                         Sobel水平边缘增强滤波器

       H=fspecial('prewitt')                      Prewitt水平边缘增强滤波器

       H=fspecial('laplacian',alpha)            近似二维拉普拉斯运算滤波器

       H=fspecial('log',n,sigma)                高斯拉普拉斯(LoG)运算滤波器

       H=fspecial('average',n)                  均值滤波器

       H=fspecial('unsharp',alpha)            模糊对比增强滤波器

说明:

对于形式H=fspecial(type),fspecial函数产生一个由type指定的二维滤波器H,返回的H常与其它滤波器搭配使用。

4.彩色增强的Matlab实现

4.1imfilter函数

功能:

真彩色增强

格式:

B=imfilter(A,h)

说明:

将原始图像A按指定的滤波器h进行滤波增强处理,增强后的图像B与A的尺寸和类型相同

图像的变换

1.离散傅立叶变换的Matlab实现

     Matlab函数fft、fft2和fftn分别可以实现一维、二维和N维DFT算法;而函数ifft、ifft2和ifftn则用来计算反DFT。

这些函数的调用格式如下:

        A=fft(X,N,DIM)

     其中,X表示输入图像;N表示采样间隔点,如果X小于该数值,那么Matlab将会对X进行零填充,否则将进行截取,使之长度为

N;DIM表示要进行离散傅立叶变换。

       A=fft2(X,MROWS,NCOLS)

其中,MROWS和NCOLS指定对X进行零填充后的X大小。

       A=fftn(X,SIZE)

其中,SIZE是一个向量,它们每一个元素都将指定X相应维进行零填充后的长度。

     函数ifft、ifft2和ifftn的调用格式于对应的离散傅立叶变换函数一致。

例子:

图像的二维傅立叶频谱

%读入原始图像

I=imread('lena.bmp');

imshow(I)

%求离散傅立叶频谱

J=fftshift(fft2(I));

figure;

imshow(log(abs(J)),[8,10])

2.离散余弦变换的Matlab实现

2.1.dCT2函数

功能:

二维DCT变换

格式:

B=dct2(A)

       B=dct2(A,m,n)

       B=dct2(A,[m,n])

说明:

B=dct2(A)计算A的DCT变换B,A与B的大小相同;B=dct2(A,m,n)和B=dct2(A,[m,n])通过对A补0或剪裁,使B的大

小为m×n。

2.2.dict2函数

功能:

DCT反变换

格式:

B=idct2(A)

       B=idct2(A,m,n)

       B=idct2(A,[m,n])

说明:

B=idct2(A)计算A的DCT反变换B,A与B的大小相同;B=idct2(A,m,n)和B=idct2(A,[m,n])通过对A补0或剪裁,使B

的大小为m×n。

2.3.dctmtx函数

功能:

计算DCT变换矩阵

格式:

D=dctmtx(n)

说明:

D=dctmtx(n)返回一个n×n的DCT变换矩阵,输出矩阵D为double类型。

3.图像小波变换的Matlab实现

3.1一维小波变换的Matlab实现

(1)dwt函数

功能:

一维离散小波变换

格式:

[cA,cD]=dwt(X,'wname')

       [cA,cD]=dwt(X,Lo_D,Hi_D)

说明:

[cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname'对信号X进行分解,cA、cD

分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组Lo_D、Hi_D对信号进行分解。

(2)idwt函数

功能:

一维离散小波反变换

格式:

X=idwt(cA,cD,'wname')

       X=idwt(cA,cD,Lo_R,Hi_R)

       X=idwt(cA,cD,'wname',L)

       X=idwt(cA,cD,Lo_R,Hi_R,L)

说明:

X=idwt(cA,cD,'wname')由近似分量cA和细节分量cD经小波反变换重构原始信号X。

       'wname'为所选的小波函数

       X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器Lo_R和Hi_R经小波反变换重构原始信号X。

       X=idwt(cA,cD,'wname',L)和X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号X中心附近的L个点。

3.2二维小波变换的Matlab实现

         二维小波变换的函数

-------------------------------------------------

    函数名               函数功能

---------------------------------------------------

    dwt2           二维离散小波变换

  wavedec2      二维信号的多层小波分解

    idwt2          二维离散小波反变换

  waverec2       二维信号的多层小波重构

  wrcoef2         由多层小波分解重构某一层的分解信号

  upcoef2         由多层小波分解重构近似分量或细节分量

  detcoef2        提取二维信号小波分解的细节分量

  appcoef2       提取二维信号小波分解的近似分量

  upwlev2        二维小波分解的单层重构

  dwtpet2        二维周期小波变换

  idwtper2       二维周期小波反变换

-------------------------------------------------------------

(1)wcodemat函数

功能:

对数据矩阵进行伪彩色编码

格式:

Y=wcodemat(X,NB,OPT,ABSOL)

       Y=wcodemat(X,NB,OPT)

       Y=wcodemat(X,NB)

       Y=wcodemat(X)

说明:

Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵X的编码矩阵Y;NB伪编码的最大值,即编码范围为0~NB,缺省值NB=16;

      OPT指定了编码的方式(缺省值为'mat'),即:

                OPT='row',按行编码

                OPT='col',按列编码

                OPT='mat',按整个矩阵编码

      ABSOL是函数的控制参数(缺省值为'1'),即:

                ABSOL=0时,返回编码矩阵

                ABSOL=1时,返回数据矩阵的绝对值ABS(X)

(2)dwt2函数

功能:

二维离散小波变换

格式:

[cA,cH,cV,cD]=dwt2(X,'wname')

       [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)

说明:

[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname'对二维信号X进行二维离散小波变幻;cA,cH,cV,cD分别为近似分

量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分

解信号X。

(3)wavedec2函数

功能:

二维信号的多层小波分解

格式:

[C,S]=wavedec2(X,N,'wname')

       [C,S]=wavedec2(X,N,Lo_D,Hi_D)

说明:

[C,S]=wavedec2(X,N,'wname')使用小波基函数'wname'对二维信号X进行N层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D)使用指定

的分解低通和高通滤波器Lo_D和Hi_D分解信号X。

(4)idwt2函数

功能:

二维离散小波反变换

格式:

X=idwt2(cA,cH,cV,cD,'wname')

       X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)

       X=idwt2(cA,cH,cV,cD,'wname',S)

       X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

说明:

X=idwt2(cA,cH,cV,cD,'wname')由信号小波分解的近似信号cA和细节信号cH、cH、cV、cD经小波反变换重构原信号X

;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)使用指定的重构低通和高通滤波器Lo_R和Hi_R重构原信号X;X=idwt2(cA,cH,cV,cD,'wname',S)

和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)返回中心附近的S个数据点。

(5)waverec2函数

说明:

二维信号的多层小波重构

格式:

X=waverec2(C,S,'wname')

       X=waverec2(C,S,Lo_R,Hi_R)

说明:

X=waverec2(C,S,'wname')由多层二维小波分解的结果C、S重构原始信号X,'wname'

为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R)使用重构低通和高通滤波器Lo_R和Hi_R重构原信号。

图像处理工具箱

1.图像和图像数据

  缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点

数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩

阵中每个数据占用1个字节。

  在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。

另外,uint8

与double两种类型数据的值域不同,编程需注意值域转换。

         从uint8到double的转换

  ---------------------------------------------

      图像类型       MATLAB语句

  ---------------------------------------------

    索引色            B=double(A)+1

    索引色或真彩色B=double(A)/255

    二值图像         B=double(A)

  ---------------------------------------------

        从double到uint8的转换

  ---------------------------------------------

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 销售营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1