内置振荡器的电能测量芯片ADE7757及其应用.docx

上传人:b****8 文档编号:10509616 上传时间:2023-02-17 格式:DOCX 页数:16 大小:18.25KB
下载 相关 举报
内置振荡器的电能测量芯片ADE7757及其应用.docx_第1页
第1页 / 共16页
内置振荡器的电能测量芯片ADE7757及其应用.docx_第2页
第2页 / 共16页
内置振荡器的电能测量芯片ADE7757及其应用.docx_第3页
第3页 / 共16页
内置振荡器的电能测量芯片ADE7757及其应用.docx_第4页
第4页 / 共16页
内置振荡器的电能测量芯片ADE7757及其应用.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

内置振荡器的电能测量芯片ADE7757及其应用.docx

《内置振荡器的电能测量芯片ADE7757及其应用.docx》由会员分享,可在线阅读,更多相关《内置振荡器的电能测量芯片ADE7757及其应用.docx(16页珍藏版)》请在冰豆网上搜索。

内置振荡器的电能测量芯片ADE7757及其应用.docx

内置振荡器的电能测量芯片ADE7757及其应用

摘要:

ADE7757是美国AD公司研制生产的高精度电能测量芯片。

这种芯片非常适合动态范围大,干扰严重的测量系统。

文中介绍了ADE7757的结构特点和工作原理,给出了ADE7757在电能测量仪表中的应用电路。

关键词:

ADE7757;瞬时有功功率;平均有功功率

1 概述

ADE7757是美国AD公司推出的高精度电能测量集成芯片。

与原有的同系列ADE7755相比,其芯片引脚较少,且内置了一个精确的振荡器电路来给芯片提供时钟。

这就使得使用ADE7757的仪表省掉了外部晶体或者共振器,因此可以降低总体成本。

该芯片的内部电路除了ADC和参考电路是模拟电路外,其余均为数字电路,因此芯片在长时间与极端工作条件下具有卓越的稳定性与精度。

ADE7757可在低频输出引脚F1、F2上输出平均有功功率,并可直接驱动一个机电计数器或与MCU的接口。

而高频CF逻辑则可输出用于校准的瞬时有功功率。

ADE7757的基本特性和参数如下:

●带有片内振荡器,可作为时钟源;

●精度高,且与50Hz/60Hz的IEC521/1036标准兼容;

●逻辑输出引脚REVP可用来指示可能的接线错误或负功率;

●带有片内电源监视器;

●采用单5V电源,功耗较低;

●采用交流输入。

2 内部结构及引脚功能

ADE7757是16脚SOIC封装,图1为其内部结构框图,各引脚的功能见表1所列。

表1ADE7757的引脚功能

引脚

名称

功能

1

VDD

电源

2,3

V2P,V2N

通道V2(电压通道)的模拟输入

4,5

V1P,V1N

通道V1(电流通道)的模拟输入

6

AGND

模拟地

7

REFIN/OUT

片内参考电压

8

SCF

选择校准频率

9,10

S1,S0

频率选择

11

RCLKIN

内部振荡器使能端

12

REVP

负功率检测脚

13

DGND

数字地

14

CF

校准频率逻辑输出

15,16

F2,F1

低频逻辑输出

3 ADE7757的原理特性

图1所示是ADE7757的内部原理图,图中,两个ADC电路将电流传感器和电压传感器送入的电压信号进行数字化。

这个模拟输入结构大大简化了传感器接口电路,并提供了很大的动态范围,同时简化了滤波器的设计。

电流通道(V1通道)的高通滤波器(HPF)去掉了电流信号里的全部直流成分,从而减少了有功功率计算中由电压或电流信号偏移带来的不精确性。

有功功率的计算可由瞬时功率信号获得。

瞬时功率等于电流与电压信号的乘积。

低频输出F1、F2可由有功功率的积累来获得。

低频意味着在输出脉冲之间的长时间积累。

因此,输出频率正比于平均有功功率。

平均有功功率的信息积累(如用一计数器)可得到有功能量。

相反地,CF脚输出高频率可缩短积累时间,其输出频率正比于瞬时有功功率。

3.1片内振荡器(OSC)

ADE7757的片内振荡器频率与内部振荡器的使能端RCLKIN的外接电阻成反比。

外接电阻为5.5~20kΩ时,振荡器可正常工作,但一般选用5.5~6.4kΩ的范围。

当RCLKIN接6.2kΩ电阻时,内部振荡器的频率为466kHz。

因为输出频率是与振荡器频率直接成比例的,因此外接电阻必须具有低公差和低温度漂移等特性,以保证芯片的稳定性与线性度。

3.2电流与电压通道的模拟输入

通常电流传感器的电压输出可由通道V1接入ADE7757芯片。

通道V1是一个全微分电压输入通道,V1P是正极输入,V1N是负极输入。

特殊应用时,通道V1的最大微分信号应小于±30mV(相对于AGND),普通应用时为±6.25mV。

通道V1的典型连接电路如图2所示,该图中的电流传感器实际上是一分流电阻,相对于其它电流传感器(如电流变压器),该分流电阻的功耗较低,这更有利于小电流仪表。

电压传感器的电压输出则由通道V2接入ADE7757芯片。

通道V2也是一个全微分电压输入通道,V2P是正极输入,V2N是负极输入。

其最大微分信号为±165mV。

输入电压以AGND为参考。

通道V2的典型连接电路见图3。

典型情况下,ADE7757相对于中性线有一个偏差,可用一个电阻分配器提供一个正比于线电压的电压信号。

另外,调整Ra,Rb,Rf的比例也是调整仪表增益刻度的有效方法。

3.3数/频转换

如前所述,低通滤波器(LPF)的数字输出中包括有功功率信息。

然而由于LPF不是理想的滤波器,因此输出信号还包括有削弱了的线频率及其谐波成分cos(hωt),其中h=1,2,3……。

由于瞬时功率计算的原因,主要谐波成分为线频率的两倍,即2ω。

实际上,LPF输出的瞬时有功功率信号仍包括了大量的瞬时功率信息,例如cos(2ωt)。

此信号被送入数字频率转换器并经过积累,即可得到输出频率。

信号的积累可以减少瞬时有功功率信号中的任何非直流成分。

另外,由于正弦信号的平均值为0,因此ADE7757产生的频率与平均有功功率成比例。

频率输出CF随着时间而变化的原因主要是瞬时有功功率信号中的cos(2ωt)成分所致。

CF输出的频率可以达到F1和F2输出频率的2048倍,这个高频输出是在数字转换为频率时积累了很短的时间而产生的。

积累时间很短意味着只包括很少的cos(2ωt)成分,这就使得一些瞬时有功功率信号通过了数字频率转换器。

这在实际应用中不成问题,因为当CF用作校准时,频率将会通过频率计数器来平均,由此去掉波纹。

由于F1和F2的输出频率很低,因此引入了很多的瞬时有功功率信号的平均值,所以输出的是大大削弱了正弦成分的频率。

3.4传输函数

a.F1和F2的频率输出

如前所述,F1和F2的频率输出是对有功功率信号较长时间的积累,它与平均有功功率成比例。

输出频率与输入电压和电流信号的关系如下:

Freq=(515.84V1rmsV2rmsF1-4)/V2ref

其中,Freq为F1和F2的输出频率,单位为Hz,V1rms和V2rms是通道V1和V2的差分电压信号输入(V),Vref为参考电压(2.5V±8%),F1-4是表2中由逻辑输入S0和S1选择的四种可能的频率之一。

表2F1-4频率选择及F1,F2的最大输出频率

S1

S0

F1-4值

最大频率

0

0

OSC/219

0.176

0

1

OSC/218

0.352

1

0

OSC/217

0.704

1

1

OSC/216

1.408

表3CF最大输出频率与F1,F2的关系

SCF

S1

S0

CF(Hz)

1

0

0

128×F1,F2=22.5

0

0

0

64×F1,F2=11.26

1

0

1

64×F1,F2=22.5

0

0

1

32F1,F2=11.5

1

1

0

32F1,F2=22.5

0

1

0

16×F1,F2=11.26

1

1

1

16×F1,F2=22.5

0

1

1

2048×F1,F2=2.867k

b.CF的频率输出

表3所列为CF最大输出频率与F1、F2之间的关系。

当逻辑输入SCF为0,而S1和S0为1时,其最大值为2.867kHz。

3.5ADE7757与微控制器的接口

ADE7757与微控制器最简易的连接方式可利用CF的高频输出来完成。

连接时,可将CF设置为最大输出频率(如图4所示),并将CF连接至MCU计数器或接口,然后在MCU内部定时器规定的时间内计数脉冲,并取平均功率等于平均频率,同时,该值也等于计数所得值与计数时间的比值。

这样,此计数时间内所消耗的能量为平均功率与时间的乘积,也就是说计数值/时间与时间乘积的计数值。

图5ADE7757在电能测量仪表中的应用电路

4 应用电路

利用ADE7757可以很方便地构成一个完整的低成本、微功耗的电能测量仪表。

图5为其应用电路,图中,A3和A4接入电流传感器送来的电压信号,并经电容滤波后送入V1通道。

A1和A2接入电压传感器送来的电压信号并经可变电阻(用来调节精度)送入V2通道。

A7、A8接到记度器,用CF输出的脉冲来驱动记度器走字。

A5、A6输出F1和F2的脉冲可接到脉冲线。

其中,VD3用来指示输出的脉冲,VD4指示反向输入,78L05用来给ADE7757提供+5V电源。

RCLKIN直接接6.2kΩ电阻,从而使该电路不用外加振荡器。

笔者按照上述原理与电路研制了一台电能表,并用它来驱动记度器,使用结果非常满意,误差非常小,其跳变在0.2以内,且功耗也非常小。

5 结论

通过上述分析与试验,ADE7757必将在电能测量中得到广泛的应用。

它不仅具有较为简单的电路结构,而且所需的单片机资源也很少。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 管理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1