电厂认识实习论文.docx
《电厂认识实习论文.docx》由会员分享,可在线阅读,更多相关《电厂认识实习论文.docx(23页珍藏版)》请在冰豆网上搜索。
电厂认识实习论文
目录
一认识实习的任务与目的…………………………3
二火力发电厂的生产过程…………………………4
三实习电厂锅炉主要设备及系统…………………7
四实习电厂汽轮机设备及系统……………………18
五实习电厂主要辅助设备…………………………21
六实习心得体会……………………………………23
一认识实习的任务与目的
为了更好的认识与了解专业知识,并拓展实际的知识面,我们参观了扬州第二发电厂。
通过对该厂的初步认识,加深了我们对电厂及其相关行业的了解,并对其厂内设备有了初步认识。
总的来说,认识实习的目的是熟悉热能工程专业相关企业(主要是火力发电厂)的主要热力系统、设备技术特点及其布置,重点学习主要热力设备的结构和基本原理,为学习后续课程建立感性认识,奠定必要的基础。
在这次的认识实习中,我们的主要任务是了解火电厂的两个主要设备及其他辅助设备。
1.汽轮机部分
(1)汽轮机的整机概况;
(2)转子部分的构成及结构形式;
(3)静子部分的结构、支承方式、连接形式以及结构形式;
(4)凝汽器的技术规范与基本技术参数、总体构造与汽水流程等;
(5)回热加热器的技术规范、结构形式、布置方式和疏水方式等;
(6)给水泵、汽动给水泵汽轮机的配置、技术规范、技术特点、结构形式和现场布置;
(7)凝结水泵、循环水泵的配置、技术规范、技术特点、结构型式、现场布置。
2.锅炉部分
(1)锅炉的整体概况(锅炉技术规范与基本参数,锅炉本体外尺寸和整体布置);
(2)锅炉系统的汽水系统、风烟系统、及制粉系统;
(3)锅炉本体设备结构(炉膛和烟道的结构布置,汽包的结构和布置,下降管、炉水泵、定期排污,水冷壁的结构、管径、布置方式,过热器、再热器的结构、管径、布置,过热器、再热器的结构、管径、布置、减温器的结构及布置的级数,省煤器的结构型式、管径、布置、连接,空气预热器的结构和布置方式);
(4)燃料与燃烧设备(制粉系统的组成、工作流程,磨煤机的类型和结构,给煤机、给粉机的类型和结构,燃烧器的类型、结构、整体布置);
(5)锅炉风机的用途、类型、结构、配置和现场配置。
3.热力系统部分
(1)原则性热力系统;
(2)主蒸汽与再热蒸汽系统;
(3)汽轮机旁路系统与设备;
(4)汽轮机抽真空系统与设备;
(5)循环水系统与设备;
(6)给水回热系统与设备;
(7)汽轮机轴封系统与设备;
(8)锅炉减温水系统;
(9)锅炉排污水回收利用系统与设备。
二火力发电厂的生产过程
我们认识实习所去的扬州第二发电厂使用的燃料是煤炭,是凝汽式发电厂。
其生产过程概括的说就是把燃料(煤炭)中含有的化学能转变为电能的过程。
整个生产过程可分为以下三个阶段:
(1)燃料的化学能在锅炉中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统;
(2)锅炉产生的蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;
(3)由汽轮机旋转的机械能带动发电机发电,把机械能转变为电能,称为电气系统。
整个电能生产过程如图一所示。
(一)燃烧系统
燃烧系统由输煤、磨煤、燃烧、烽烟、灰渣等环节组成。
(1)输煤。
电厂的用煤量是非常大的,我们所实习的扬二厂地处长江岸边,故其所用煤均靠船运,该厂配有3.5万吨级进煤码头及40万吨储煤场。
(2)磨煤。
用轮船将煤运至电厂的储煤场后,经初步筛选处理,用输煤皮带送到锅炉间的原煤仓。
煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器送来的一次风烘干并带至粗粉分离器。
该厂磨煤机选用HP1003磨煤机,一次风正压直吹式制粉系统,将碾磨好的煤粉经分配器均匀送到燃烧器;每台磨另有一个润滑油站,一个液压油站与之相配套使用。
在粗粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细粉被一次风带出分离器,送到锅炉中燃烧。
图一:
发电厂生产过程
(3)锅炉与燃烧。
一次风携带煤粉与二次风按一定比例混合后经燃烧器喷入炉膛内燃烧。
该厂的燃烧器采用LNASB燃烧器。
(4)风烟系统。
送风机将冷风送到空气预热器加热,加热后的气体一部分经磨煤机、排粉风机进入炉膛,另一部分经燃烧器外侧套筒直接进入炉膛。
炉膛内燃烧形成高温烟气,沿烟道经过热器、省煤器、空气预热器逐渐降温,再经除尘器出去90%~99%的灰尘,经引风机送入烟囱,排向天空。
(5)灰渣系统。
炉膛内煤粉燃烧后生成的小灰粒,被除尘器收集成细灰排入冲灰沟,燃烧中因结焦形成的大块炉渣,下落到锅炉底部的渣斗内,经过碎渣机破碎后也排入冲灰沟,再经灰渣水泵将细灰和碎炉渣经冲灰管道排往储灰场,扬二厂又5500亩储灰场。
(二)汽水系统
火电厂汽水系统由锅炉、汽轮机、凝汽器、除氧器、加热器等设备及管道等组成,包括给水系统、循环水系统和补水系统,如图二所示。
1.给水系统。
由锅炉产生的过热蒸汽沿主蒸汽管道进入汽轮机,高速流动的蒸汽冲动汽轮机叶片转动,带动发电机旋转产生电能。
在汽轮机内作功后的蒸汽,其温度和压力大大降低,最后排入凝汽器并被冷却水冷却凝结成水(称为凝结水),汇集在凝汽器的热水井中。
凝结水由凝结水泵打至低压加热器中加热,再经除氧器除氧并继续加热。
由除氧器出来的水(叫锅炉给水),经给水泵升压和高压加热器加热,最后送入锅炉汽包(该厂二期锅炉无汽包)。
2.补水系统
。
在汽水循环过程中总难免有汽、水泄漏等损失,为维持汽水循环的正常进行,必须不断地向系统补充经过化学处理的软化水,这些补给水一般补入除氧器或凝汽器中,即是补水系统。
3.循环水系统。
为了将汽轮机中作功后排入凝汽器中的乏汽冷凝成水,需由循环水泵从长江之中抽取大量的江水送入凝汽器,冷却水吸收乏汽的热量后再排入长江之中。
(三)电气系统
发电厂的电气系统,包括发电机、励磁装置、厂用电系统和升压变电所等,如图三所示。
三实习电厂锅炉设备及系统
锅炉是火力发电厂的三大主要设备之一,它的作用是将水变成高温高压的蒸汽。
水要变成高温高压的蒸汽,必须吸热,它的热源来自燃料。
燃料在空气的帮助下燃烧、发热、生成高温的燃烧产物(烟气),这个过程就是把燃料的化学能转化为烟气的热能。
然后烟气通过锅炉的各种受热面,将这些热能传给水,水吸热后便变成蒸汽。
由此可见,锅炉是进行燃料燃烧、传热和使水汽化三种过程的综合装置。
(一)锅炉的整体概况
我们所实习的扬州第二发电厂二期工程采用哈尔滨锅炉厂引进三井巴布科克能源公司技术生产的超临界变压运行直流锅炉。
锅炉型号为HG1956/25.4-YM,型式为单炉膛、一次再热、平衡通风、露天布置、固态排渣(采用碎渣机方案)、全钢构架、全悬吊结构Π型锅炉。
锅炉以神府烟煤作为设计煤,以山西晋北烟煤作为校核煤。
锅炉的主要参数见表一。
该锅炉的汽水流程以内置式汽水分离器为界设计成双流程。
从冷灰斗进口一直到标高46.46m的中间混合集箱之间为螺旋管圈水冷壁,再连接至炉膛上部的水冷壁垂直管屏和后水冷壁吊挂管,然后经下降管引入折焰角和水平烟道侧墙,再引入汽水分离器。
从汽水分离器出来的蒸汽引至顶棚和包墙系统,再进入一级过热器中,然后再流经屏式过热器和末级过热器。
再热器分为低温再热器和高温再热器两段布置,低温再热器布置于尾部双烟道中的前部烟道,末级再热器布置于水平烟道中,逆、顺流混合换热。
水冷壁为膜式水冷壁,下部水冷壁及灰斗采用螺旋管圈,上部水冷壁为垂直管屏。
从炉膛出口至锅炉尾部,烟气依次流经上炉膛的屏式过热器、末级过热器、水平烟道中的高温再热器,然后至尾部双烟道中烟气分两路,一路流经前部烟道中的立式和水平低温再热器、省煤器,一路流经后部烟道的一级过热器、省煤器,最后进入下方的两台回转式空气预热器。
制粉系统采用直吹系统,每炉配6台HP1003型磨煤机,B-MCR工况下5台运行。
每台磨煤机供布置于一层的LNASB燃烧器,前后墙各3层,每层布置5只。
在煤粉燃烧器的上方前后墙各布置1层燃烬风,每层有5只风口。
锅炉布置有98只炉膛吹灰器、12只半长吹、50只长吹,空气预热器的冷、热端也配有4只吹灰器,吹灰器由程序控制。
炉膛出口两侧各装设一只烟气温度探针,并设置炉膛监视闭路电视系统。
锅炉除渣采用碎渣机方案,装于冷灰斗下部。
其整体布置见图四。
(二)锅炉的汽水系统、风烟系统、及制粉系统
1.汽水系统。
该锅炉为直流锅炉,其汽水流程如图五所示。
2.风烟系统。
本锅炉风烟系统为平衡通风系统,即利用一次风机、送风机和引风来克服气流流通过程中的各项阻力。
平衡通风系统不仅使炉膛及尾部烟道的漏风不会太大,保证较高的经济性,而且还能防止炉内高温烟气外冒,对于运行人员的安全和锅炉房岛的卫生条件均有好处。
风烟系统分为二次风系统、一次风系统和烟气系统。
(1)二次风系统。
二次风系统的作用是供给燃料燃烧所需的大量热空气。
送风机出口的二次风流经空气预热器的二次风风仓。
在空气预热器出口热二次风道设置热风再循环管道;即在环境温度比较低的时候,将空气预热器出口的二次热风引一部分到送风机的入口,以提高进入空气预热器的冷二次风温度,防止空气预热器的低温腐蚀。
每台空气预热器对应一组送风机和引风机。
两个空气预热器的进、出口风道都横向交叉联接在总风道上,用来向炉膛提供平衡的空气流。
(2)一次风系统。
一次风系统的作用是用来干燥和输送煤粉,并供给燃料挥发份燃烧所需要的空气。
大气经滤网和消音器进入一次风机,压头提升后,经冷一次风总管分为两路:
一路进入磨煤机前的冷一次风管;另一路流经空气预热器,加热成热一次风后进入磨煤机前的热一次风管,热一次风和冷一次风混合后进入磨煤机。
在合适的温度和流量下,煤粉被一次风干燥并经煤粉管道输送到燃烧器喷嘴喷入炉膛燃烧一次风的流量取决与燃烧系统所需的一次风量和流经空气预热器的漏风量。
密封风机风源来自冷一次风,并最终通过磨煤机而构成一次风的一部分。
一次风机出口到空气预热器进口不设置预热装置。
(3)烟气系统。
烟气系统的作用是将燃料燃烧生成的烟气流经各受热面传热后连续并及时地排之大气,以维持锅炉正常运行。
引风机进口压力与锅炉负荷、烟道流通阻力相关。
引风机流量决定于炉内燃烧产物的容积和炉膛出口后面的所有漏入烟道中的空气量,其中最大的漏风量是空气预热器从空气侧漏入烟气侧的空气量。
整个风烟系统的流程图如图六所示。
3.制粉系统。
该厂锅炉采用HP磨煤机正压直吹式制粉系统,每台锅炉配6台磨煤机。
制粉系统的主要作用有:
将燃煤从原煤仓按与磨煤机出力相匹配的速度输入磨煤机;向磨煤机提供一定温度和数量的干燥剂——冷热一次风,使原煤在经历磨制过程的同时完成干燥过程;使煤粉通过分离器进行粒度分级,保证输入燃烧器的煤粉细度合格;通过分离器的合格煤粉被一次风输送,以一定的温度和风煤比,均匀地分配到投运的燃烧器。
(三)锅炉本体设备结构
锅炉的主要性能要求如下:
锅炉带基本负荷并参与调峰;锅炉变压运行,采用定-滑-定的方式,压力-负荷曲线与汽轮机相匹配;过热汽温在35%~100%BMCR、再热汽温在50%~100%BMCR负荷范围内,保持在额定值,温度偏差不超过5℃;锅炉在燃用设计煤种时,能满足负荷在不大于锅炉的30%BMCR时不投油长期安全稳定运行,并在最低稳燃负荷及以上范围内满足自动化投入率100%的要求;锅炉燃烧室的设计承压能力不低于±5800Pa,当燃烧室突然灭火内爆,瞬时不变形承载能力不低于±8700Pa。
1.锅炉的启动系统。
本锅炉配有启动系统,以与锅炉水冷壁最低质量流量相匹配。
启动系统为内置式启动分离系统,包括四只启动分离器、水位控制阀、截止阀、管道及附件等组成。
启动分离器为圆形筒体结构,直立式布置。
分离器的设计除考虑汽水的有效分离,防止发生分离器蒸汽带水现象以外,还考虑启动时汽水膨胀现象。
分离器带储水箱,锅炉配置启动循环泵。
启动系统的功能主要如下:
(1)锅炉给水系统和水冷壁及省煤器的冷态和温态水冲洗,并将冲洗水通过扩容器和冷凝水箱排入冷却水总管。
(2)满足锅炉冷态、温态、热态、和极热态启动的需要,直到锅炉达到30%BMCR最低直流负荷,由在循环模式转入直流方式运行为止。
(3)只要水质合格,启动系统可完全回收工质及其所含的热量。
(4)在最低直流负荷以下运行时,贮水箱出现水位,将根据水位的高低自动打开相应的水位调节阀,进行炉水再循环。
2.省煤器。
在双烟道的下部均布置有省煤器,省煤器以顺列布置,以逆流方式与烟气进行换热。
给水经省煤器的入口汇集集箱分别供至前后的省煤器入口集箱。
省煤器的管子规格为φ51×6mm,材料为SA-201C,管组横向节距为115mm,共190排。
省煤器向上形成共4排吊挂管,用于吊挂尾部烟道中的水平过热器和水平再热器吊挂管的规格为φ51×9mm、材料为SA-213T12。
吊挂管的4只出口集箱两端与两根下降管相连,下降管将水供至水冷壁下集箱。
在省煤器烟气入口的四周墙壁上设置了烟气阻流板,避免形成烟气走廊而造成局部磨损。
省煤器的主要设计参数如表二所示。
3.炉膛与水冷壁。
炉膛水冷壁采用焊接膜式壁,炉膛断面尺寸为22187mm×15632mm。
给水经省煤器加热后进入外径为φ219mm、材料为SA-106C的水冷壁下集箱,经水冷壁下集箱进入冷灰斗水冷壁。
冷灰斗的角度为55°,下部出渣口的宽度为1400mm。
灰斗部分的水冷壁由水冷壁下集箱引出的436根直径φ38mm、壁厚为6.5mm材料为SA-213T12、节距为53mm的管子组成的管带围绕成。
经过灰斗拐点后,管带以17.893°的倾角继续盘旋上升。
螺旋管圈水冷壁在标高43.61m处通过直径为φ219mm、材料为SA-335P12的中间集箱转换成垂直管屏,垂直管屏由1312根φ31.8mm、材料为SA-213T12、节距为57.5mm的管子组成,垂直管屏(包括后水吊挂管)出口集箱的30根引出管与2根下降管相连,下降管分别连接折焰角入口集箱和水平烟道侧墙的下部入口集箱。
折焰角由384根φ44.5×6、节距为57.5mm的管子组成,其穿过后水冷壁形成水平烟道底包墙,然后形成4排水平烟道管束与出口集箱相连。
水平烟道侧墙由78根φ44.5×6mm的管子组成,其出口集箱与烟道管束共引出24根φ168mm的连接管与4只启动分离器相连,汽水混合物在其中分离。
水冷壁管型都为光管。
水冷壁总受热面积为4260m2。
水冷壁的水容积为67m3。
炉膛与水冷壁的示意图如图七所示。
4.过热器。
水蒸气再过热气中的流程如图八所示。
经四只汽水分离器引出的蒸汽进入外径为φ219mm的顶棚入口集箱,顶棚过热器由192根φ63.5mm、材料为SA-213T12、节距为115mm的管子组成,管子之间焊接6mm厚的扁钢,另一端接至外径为φ219mm顶棚出口集箱。
顶棚出口集箱同时与后烟道前墙和后烟道顶棚相接,后烟道顶棚转弯下降形成后烟道后墙,后烟道前、后墙与后烟道下部环形集箱相接,并连接后烟道两侧包墙。
侧包墙出口集箱的24根φ168mm引出管与后烟道中间隔墙入口集箱相接,隔墙向下引至隔墙出口集箱,隔墙出口集箱与一级过热器相连。
除烟道隔墙的管径为57mm外,烟道包墙的其余管子外径均为φ44.5mm。
一级过热器布置于尾部双烟道中的后部烟道中,由3段水平管组和1段立式管组组成,第1、2段水平过热器沿炉宽布置190片、横向节距为115mm,每片管组由4根φ57×8mm、材料为SA-213T12的管子绕成。
至第3段水平过热器,管组变为95片,横向节距为230mm,每片管组由8根φ51×6.6mm、材料为SA-213T12的管子绕成,立式一级过热器采用相同的管子和节距,并引至出口集箱。
经一级过热器加热后,蒸汽经2根φ508mm的连接管和一级喷水减温器进入屏式过热器入口汇集集箱。
屏式过热器布置在上炉膛,沿炉宽方向共有30片管屏,管屏间距为690mm。
每片管屏由28根并联管弯制而成,管子的直径为φ38mm,根据管子的壁温不同,入口段材质为SA-213T91,外圈管及出口段采用SA-213TP347H。
从屏式过热器出口集箱引出的蒸汽,经2根左右交叉的直径为φ508mm连接管及二级喷水减温器,进入末级过热器。
末级过热器位于折焰角上方,沿炉宽方向排列共30片管屏,管屏间距为690mm。
每片管组由20根管子绕制而成,管子的直径为φ44.5mm,材质为SA-213T91。
蒸汽在末级过热器中加热到额定参数后,经出口集箱和主蒸汽导管进入汽轮机。
过热器进、出口集箱之间的所有连接管道均为两端引入、引出,并进行左右交叉,确保蒸汽流量在各级受热面中的均匀分配,避免热偏差的发生。
5.再热器。
我们所参观的锅炉有低温再热器和高温再热器两级再热器。
(1)低温再热器。
低温再热器布置于尾部双烟道的前部烟道中,由3段水平管组和1段立式管组组成。
1、2、3段水平再热器沿炉宽布置190片、横向节距为115mm,每片管组由5根管子绕成,1、2段的管子规格为φ63.5×4.3mm、材料为SA-210C,3段的管子规格为φ57×4.3mm、材料为SA-209T1a。
立式低温再热器的片数变为95片,横向节距为230mm,每片管组由10根管子组成,管子规格为φ57×4.3mm、材料为SA-213T22。
(2)高温再热器。
高温再热器布置于水平烟道内,与立式低温再热器直接连接,逆顺混合换热布置。
高温再热器沿炉宽排列95片,横向节距为230mm,每片管组采用10根管,入口段管子为φ57×4.3mm、材料为SA-213T22,其余管子为φ51×4.3mm、材料为SA-213T91及TP347。
6.气温调节装置。
过热器系统设有两级喷水减温器,每级减温器均为2只。
一级喷水减温器装在一级过热器和屏式过热器之间的管道上,外径为φ508mm,壁厚为84mm,材料为SA-335P12;二级喷水减温器装在屏式过热器和末级过热器之间的管道上,外径为φ508mm壁厚为68mm,材料为SA-335P91。
再热蒸汽的汽温调节主要采用尾部烟气挡板调温,本锅炉在低温再热器入口管道配置2只事故喷水减温器,减温器的外径为φ610mm,壁厚为25mm,材料为SA-106C。
过热器配置两级喷水减温装置,左右分别调节。
过热器一级喷水减温水量(BMCR)为58.7T/H;二级喷水减温水量(BMCR)为58.7T/H。
总流量不超过BMCR工况12.6%过热蒸汽流量。
再热器喷水减温总流量约为3%再热蒸汽流量(BMCR工况)。
7.空气预热器。
每台锅炉配有两台半模式、双密封、三分仓容克式空气预热器,立式布置,烟气与空气以逆流方式换热。
预热器型号为31.5-VI(T)-1833-SMR,转子直径为Ф12935mm,传热元件总高度2000mm。
预热器转子采用半模式扇形仓格结构,热端和热端中间层传热元件采用DU板型。
所有传热元件盒均制成较小的组件,检修时可全部从侧面检修门孔处抽出,更换非常方便。
冷端传热元件及元件盒的材料采用耐低温腐蚀的Corten钢制作,可保证使用寿命大于50000小时。
预热器采用双径向、双轴向密封系统。
热端静密封采用美国ALSTOM-API新结构,为迷宫式密封结构,既保证密封性能,又可使扇形板上下移动;冷端静密封采用胀缩节式,既保证了不漏风,又可以调整扇形板位置;热端和冷端静密封由通常的单侧密封改为双侧密封,既减少了漏风又提高了使用寿命
(四)燃烧器
燃烧器的设计原则主要有:
增大挥发份从燃料中释放出来的速率,以获得最大的挥发物生成量;在燃烧的初始阶段除了提供适量的氧以供稳定燃烧所需要以外,尽量维持一个较低氧量水平的区域,以最大限度地减少NOx生成;控制和优化燃料富集区域的温度和燃料在此区域的驻留时间,以最大限度地减少NOx生成;增加煤焦粒子在燃料富集区域的驻留时间,以减少煤焦粒子中氮氧化物释出形成NOx的可能;及时补充燃尽所需要的其余的风量,以确保充分燃尽。
本锅炉所使用的燃烧器的布置如图九所示。
三井巴布科克公司(MitsuiBabcock)的经验表明旋流燃烧器的喉口设计对燃烧器性能(火焰稳定性、燃烧器区域结渣的控制等)和整个炉膛都有十分重要的影响。
三井巴布科克公司(MitsuiBabcock)所有新设计的LNASB燃烧器都安装有一只专门设计的喉口。
这个喉口有合理的旋角;喉口前缘由炉膛水冷壁管环绕;喉口表面镶衬光洁的、导热性能良好的碳化硅砖,不仅耐高温、耐磨,而且与普通耐火材料相比能够大大降低喉口表面的温度,有助于防止喉口部位结渣。
大量运行经验表明,采用这种结构的喉口可以完全消除燃烧器喉口区域的结渣。
(五)锅炉风机
锅炉风机主要有送风机、引风机和一次风机。
1.送风机。
该厂送风机型式为动叶可调轴流式风机ASN2730/1400,两台风机并联运行。
调节方式为液压动叶调节。
水平对称布置,垂直进风,水平出风。
安装在室外,由沈阳鼓风机厂生产。
2.引风机。
该厂引风机型式为静叶可调轴流式风机AN35e6(V13+40),两台风机并联运行。
调节方式为静叶调节。
水平布置,两台风机的冷却风机对称布置,可调节前导叶电动执行机构安装位置从电机一端看均在风机右侧。
卧式、垂直进气。
由成都电力机械厂生产。
3.一次风机。
该厂一次风机型式为动叶可调轴流式风机AST-1792/1120,两台风机并联运行。
调节方式为液压动叶调节。
水平对称布置,垂直进风,水平出风。
叶轮级数为两级。
由沈阳鼓风机厂有限公司生产。
四实习电厂汽轮机设备及系统
汽轮机也是发电厂的三大设备之一,是发电厂的原动机,它是把蒸汽的热能转化为大轴的机械能。
通过锅炉与汽轮机之间的热力系统完成工质的汽水循环,热力系统包括凝汽冷却系统,回热加热系统、疏水系统以及补水系统等若干子系统,并利用各种热力设备来完成各自的功能凝汽冷却系统主要使汽轮机的出口汽造成真空,让进入汽轮机的出口汽及工作蒸汽从高的压力和温度,膨胀到可能达到的最低压力,尽可能的多方出热量变为机械能。
同时,使乏汽加以冷却凝结成水,该系统由凝汽器、抽汽器、冷水塔及管道等主要设备组成。
回热加热系统的主要作用是为减少进入凝汽器的蒸汽量,以减少热量损失,提高热效率,利用汽轮机的各级抽汽,在逐级加热器中给水加热,该系统的主要设备有回热加热器、除氧器等。
随机组的型式和供热要求的不同,抽汽的级数和压力也不同。
为保证热力系统的正常工作且适应电能负荷的变化要求,汽轮机设置有调速系统,用调速器来保证汽轮机的转速在允许的范围内变化。
同时在汽轮机上还装设有保护装置,最常见的有危机保安器、盘车装置以及轴向装置等。
汽轮机的整体概况扬二电厂汽轮机选用东方汽轮机厂提供的N600-24.2/538/566超临界、一次中间再热、三缸四排汽、单轴、双背压、凝汽式汽轮发电机组。
电厂燃煤设计煤种为神府东胜煤。
电厂水源为长江水源。
长江水量充沛,且含沙量很小,可充分保证电厂用水量的需要。
供水方式为一次循环(直流)供水。
电厂水源为长江水源,有海水倒灌。
汽轮机的主要参数见表三:
额定功率(铭牌功率TRL)下参数
额定功率
600MW
额定主汽门前压力
24.2MPa(a)
额定主汽门前温度
538℃
额定再热汽阀前温度
566℃
加热器级数
8级(3高4低1除氧)
给水温度(TRL工况)
286.3℃
表三汽轮机主要参数
该汽轮机高、中、低压缸均采用已有成熟运行业绩的结构和材料。
高压内缸、喷嘴室及喷嘴、中压内缸、导流环等部件选用在高温下持久强度较高的材料。
在每个低压缸上半部设置的排汽隔膜阀(即大气阀),爆破压力值为34.3kPa(g)。
低压缸与凝汽器采用不锈钢弹性膨胀节连接,凝汽器与基础采用刚性支撑的方式。
采用上猫爪支撑方式。
高中缸为双层缸结构,低压缸为三层缸结构。
汽轮机总内效率92.04(包括压损)%;高压缸效率86.41%;中压缸效率92.55%;低压缸效率92.97%。
通流级数分别为高压缸8级中压缸6级低压缸2*2*7级。
(二)转子、静子部分
1高、中、低压缸转子。
汽轮机转子采用无中心孔