系统工程师ACDCDCDC 电气电子类 电力电子专业.docx

上传人:b****8 文档编号:10454463 上传时间:2023-02-11 格式:DOCX 页数:32 大小:33.88KB
下载 相关 举报
系统工程师ACDCDCDC 电气电子类 电力电子专业.docx_第1页
第1页 / 共32页
系统工程师ACDCDCDC 电气电子类 电力电子专业.docx_第2页
第2页 / 共32页
系统工程师ACDCDCDC 电气电子类 电力电子专业.docx_第3页
第3页 / 共32页
系统工程师ACDCDCDC 电气电子类 电力电子专业.docx_第4页
第4页 / 共32页
系统工程师ACDCDCDC 电气电子类 电力电子专业.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

系统工程师ACDCDCDC 电气电子类 电力电子专业.docx

《系统工程师ACDCDCDC 电气电子类 电力电子专业.docx》由会员分享,可在线阅读,更多相关《系统工程师ACDCDCDC 电气电子类 电力电子专业.docx(32页珍藏版)》请在冰豆网上搜索。

系统工程师ACDCDCDC 电气电子类 电力电子专业.docx

系统工程师ACDCDCDC电气电子类电力电子专业

电路设计相关工具

PCB设计软件(Pads/Protel),仿真软件(Pspice,SIMPLIS,Saber),数学分析软件(Mathcad)等。

Automatedend-userbehaviourassessmenttoolforremoteproductandsystemtesting  

ExpertSystemswithApplications

Thispaperintroducesavirtualreality(VR)basedautomatedend-userbehaviouralassessmenttoolrequiredduringproductandsystemdevelopmentprocess.Intheproposedmethod,whileVRisusedasameansofinteractivesystemprototype;datacollectionandanalysisarehandledbyaneventbasedsystemwhichisadoptedfromhuman–computerinteractionanddataminingliterature.Theoverallobjectiveofthestudyisdevelopinganintelligentsupportsystemwherephysicalprototypingandtheneedsforhumaninvolvementasinstructors,datacollectorsandanalystsduringtheuserassessmentstudiesareeliminated.Theproposedmethodistestedonaproductdesignexampleusing27subjects.Theexperimentalresultsclearlydemonstratetheeffectivenessoftheproposeduserassessmenttool.

ArticleOutline

1.Introduction

2.Literaturereview

3.Model:

discreteeventsimulationanddatamining

3.1.Recordinguserinteractionwiththesystemasthesetofevents

3.2.Calculating“performanceparameters”usingpotentialindicators

3.3.Clusteringuserswithrespecttoperformanceindicators

3.4.Pathextractionineachclusterandcomparativeanalysis

3.5.Analysisofclusters

3.5.1.ApproachI

3.5.2.ApproachII

3.6.Evaluationofclusteranalysisapproaches

4.Experimentalset-up:

assemblysimulationanddataanalysis

4.1.Thesimulation:

assemblyofabookshelf

4.2.Processmodel

4.3.Dataanalysis

4.3.1.Performanceindicators:

completiontime,cancellationsandrepetitionsandclustering

4.3.2.FindingpreferredpathsinUserlogsinthesamecluster

4.3.3.Evaluationofresults

5.Conclusion

SPECIES—Co-evolutionofproducts,processesandproductionsystems 

CIRPAnnals-ManufacturingTechnology

Manufacturingenterprisesarechangingthewaytheybehaveinthemarkettofacetheincreasingcomplexityoftheeconomic,socio-politicalandtechnologicaldynamics.Manufacturingproducts,processesandproductionsystemsresultinbeingchallengedbyevolvingexternaldrivers,includingtheintroductionofnewregulations,newmaterials,technologies,servicesandcommunications,thepressureoncostsandsustainability.Theco-evolutionparadigmsynthesisestherecentscientificandtechnicalapproachesproposedbyacademicandindustrialcommunitiesdealingwithmethodologiesandtoolstosupportthecoordinatedevolution(co-evolution)ofproducts,processesandproductionsystems.Thispaperaimsatreviewingandsystemisingtheresearchcarriedoutinthefieldofmanufacturingco-evolutionwithaparticularfocusonproductionsystems.Anintroductoryinvestigationofvariousindustrialperspectivesontheproblemofco-evolutionispresented,followedbythedescriptionoftheco-evolutionmodelandthemethodologyadoptedforframingtheexistingscientificcontributionsintheproposedmodel.Then,thecorepartoftheworkispresented,consistinginasystemisedanalysisofthecurrentmethodologiesdealingwithco-evolvingproduct,processandsystemandadescriptionofproblemsthatremainunsolved,thusmotivatingfutureresearchstrategiesandroadmaps.

ArticleOutline

1.Introductionandproblemstatement

1.1.Industrialmotivation

1.1.1.Industrialequipmentusers

1.1.2.Industrialequipmentproducers

1.1.3.DigitalEnterpriseTechnologies(DET)

1.2.Theco-evolutionparadigm

2.Proposedframework:

theco-evolutionmodel

2.1.Objectivesoftheframework

2.2.Fundamentaldefinitions

2.3.Integrationandco-evolutionofproducts,processesandproductionsystems(P3S)

2.3.1.Integration

2.3.2.Impactofcompanyorganisation

2.3.3.Evolution

2.3.4.Evolutiondynamics

2.4.Theroleofthestrategy

2.4.1.Themanufacturingstrategy

2.4.2.Companystrategy

3.Stateoftheartanalysis

3.1.Classificationmethodology

3.2.Bibliographicsearch

3.3.Usingtheco-evolutionparadigmtoclassifyexistingscientificliterature

4.Methodologiestodrivetheco-evolutionofproducts,processesandproductionsystems(P3S)

4.1.Integratedknowledgemanagement

4.1.1.KnowledgemanagementforintegratedP3S

4.1.2.KnowledgemanagementforevolvingP3S

4.2.Configurationofco-evolvingproductionsystems

4.2.1.Performanceevaluationofco-evolvingproductionsystems

4.2.2.Useofthesystemco-evolutionenablers

4.2.3.Selectionofthesystemco-evolutionenablers

4.2.4.Definitionoftheproductionsystemandresourcearchitecture

4.3.Controlofevolvingproductionsystems

4.4.Productionplanningandschedulingunderuncertainty

4.5.Evolutionaryprocessplanning

4.6.ControlofthedynamicsofP3Sco-evolution

4.6.1.Factorycontrol

4.6.2.Productionnetworkcoordination

4.6.3.Manufacturingstrategy

4.7.Implementationofco-evolution

4.7.1.Newbusinessmodels

4.7.2.Complexityandco-evolution

4.7.3.Reconfigurability,flexibility,adaptability,changeabilityandco-evolution

4.7.4.Guidelinesforindustrialapplications

4.7.5.Co-evolutionandresearchpolicies

5.Futureresearchpriorities

6.Conclusions

Acknowledgements

Optimizingcustomer'sselectionforconfigurableproductinB2Ce-commerceapplication  

ComputersinIndustry

ManycompaniesprovideconfigurableproductsonInternettosatisfycustomers’diversifiedrequirements.Mostofbusiness-to-consumer(B2C)e-commercesoftwaresystemsusetree-orwizard-likeapproachestoguidecustomersinconfiguringacustomizedproductonInternetwebpages.However,customersmayfeelconfusedwhiletheyareselectingcomponentsofaproductfromoptionlists,sincetheyareusuallynotfamiliarwiththetechnicaldetailsofthesecomponents.Afewe-commercesitesuserecommendationsystemstoprovidesuggestedproductsforcustomers,buttheyhavetomaintainuserprofilesandhavelimitationssuchasnewuserproblemandcomplexity.Therefore,theymaynotbesuitableforsmallandmedium-sizedenterprises.Thisresearchproposesanewapproachtohelpcustomersconfiguretheirexpectedproducts.Byusingthisapproach,onceacustomerinputsthelevelsofimportanceofrequirements,totalbudgetoftheexpectedproduct,thesoftwaresystemcanfigureoutacustomizedproductwhichmaximallymeetsthecustomer'sexpectations,andcanalsoprovidethesuboptimalsolutionsforfurtherselections.Amathematicalmodeltoformulatethisoptimizationproblemisestablished.Acasestudyisusedtodemonstratethefeasibilityandeffectivenessofthisapproach.

ArticleOutline

1.Introduction

2.Literaturereview

2.1.Productfamily

2.2.Productconfiguration

2.3.Recommendationsystems

3.Modelingofcomponentsselection

3.1.TranslateCRstoTAs

3.2.Dealingwithcontributionsofproductcomponents

3.3.Componentcompatibility

3.4.Productprice

3.5.Optimizationmodel

3.6.Near-optimalsolutionspool

4.Illustrativeexample

5.Discussions

6.Conclusions

Acknowledgements

Newtrendsfordesigntowardssustainabilityinchemicalengineering:

Greenengineering  

趋向于绿色工程/产业的化学工程可持续化设计

ChemicalEngineeringJournal化学工程学报

Abroadreviewofdisciplinesandtechnologiesconcerningthelast-decade-advancesandstate-of-the-artintheunderstandingandapplicationofsustainabilityfromaChemicalEngineeringviewpointispresented.Uptonowitwashardtofindusefulsustainabilitycriteriaandready-to-useguidancetoolsforthedesignofproducts,processesandproductionsystems.Fortunately,inthelastdecadearangeofpracticesanddisciplineshaveappearedtransformingthewayinwhichtraditionaldisciplineswereconceived.Firstly,areviewoftheconceptofsustainabilityanditssignificanceforthechemicalandprocessindustryispresented.Then,severalinspiringphilosophiesanddisciplineswhicharethebasisofthenewtrendsindesignarebrieflyreviewed,namely,TheNaturalStep,Biomimicry,CradletoCradle,GettingtoZeroWaste,ResilienceEngineering,InherentlySaferDesign,EcologicalDesign,GreenChemistryandSelf-Assembly.ThecoreofthemanuscriptisadeepreviewofwhathasbeendoneinGreenEngineeringsofar,includingitsmaindefinitionsandscopeofapplication,differentguidingprinciples,frameworksfordesignandlegislativeaspects.ArangeofillustrativeindustrialapplicationsandseveraltoolsorientedtoGEareanalysed.Finally,someeducationalconsiderationsandtrainingopportunitiesareincluded,providingeducationatacademicanduniversitylevelsallowsforthecreationofacriticalmassofengineersandscientiststofostergreenengineeringandsustainabledevelopmentinthefuture.

ArticleOutline

1.Introduction

2.Thegoalofsustainabilityinthechemicalandprocessindustry

2.1.Definitionoftheterm

2.2.Interpretation

2.3.Targetdimensions

2.4.Postulatesspecification

2.5.Measurementandevaluation:

indexesofsustainability

2.6.Resources

3.Baseinspirationphilosophiesandotherrelateddisciplines

3.1.Designphilosophy

3.1.1.TheNaturalStep

3.1.2.Biomimicry

3.1.3.Cradle-to-cradle.remakingthewaywedesignthings

3.1.4.Gettingtozerowaste

3.1.5.Resilienceengineering

3.2.Safety

3.2.1.Inherentlysaferdesign,ISD

3.3.Facilitiesandbuildings

3.3.1.Ecologicaldesign:

buildingsfortheenvironment

3.4.Thechemistryandtheprocess

3.4.1.Greenchemistry

3.4.1.1.ExampleofGCinthepharmaceuticalindustry

3.4.1.2.ExamplesofGCinthechemicalindustry

3.4.2.Self-assembly:

buildinginanaturalway

4.Greenengineering

4.1.Definitionandscopeofapplication

4.2.Approachingsustainabilitythroughprinciples

4.3.Greenengineeringframeworksfordesign

4.3.1.RenewedEuropeanpolicyforchemicals,REAC

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 管理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1