六年级数学下册比例教案苏教版.docx

上传人:b****7 文档编号:10433637 上传时间:2023-02-11 格式:DOCX 页数:20 大小:22.18KB
下载 相关 举报
六年级数学下册比例教案苏教版.docx_第1页
第1页 / 共20页
六年级数学下册比例教案苏教版.docx_第2页
第2页 / 共20页
六年级数学下册比例教案苏教版.docx_第3页
第3页 / 共20页
六年级数学下册比例教案苏教版.docx_第4页
第4页 / 共20页
六年级数学下册比例教案苏教版.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

六年级数学下册比例教案苏教版.docx

《六年级数学下册比例教案苏教版.docx》由会员分享,可在线阅读,更多相关《六年级数学下册比例教案苏教版.docx(20页珍藏版)》请在冰豆网上搜索。

六年级数学下册比例教案苏教版.docx

六年级数学下册比例教案苏教版

课题:

比例的意义和性质1

教材类型:

苏教版    所属学科:

数学>>第十二册    

主备教师:

钱建兵    备课时间:

2008/3/12    浏览人数:

2

教案内容:

教学内容:

义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质。

3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

教学重点:

理解并掌握比例的基本性质。

教学难点:

探究发现比例的基本性质。

设计理念:

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。

而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学步骤

一、复习引新

 导入新课

1、找找比比:

(判断下面的比,哪些能组成比例?

把组成的比例写出来。

3:

5   18:

30       0.4:

0.2   1.8:

0.9

5/8:

1/4   7.5:

3      2:

8   9:

27

学生独立完成,重点说说判断过程。

2、今天我们继续研究比例的有关知识。

学生回顾判断两个比能否组成比例的方法

二、认识比例

探索规律

1、认识比例各部分的名称

(1)介绍“项”:

组成比例的四个数,叫做比例的项。

(2) 3:

5 = 18 :

30学生尝试起名。

师介绍:

比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3:

5 = 18 :

30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:

3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

2、教学例4

(1)理解题意,信息搜索:

提问:

你能根据图中的数据写出比例吗?

(2)、学生写不同比例:

引导学生写出尽可能多的比例。

并逐一板书,同时说出它们的内项和外项。

引导思考:

仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

(3)、学生探索规律

学生先独立思考,再小组交流,探究规律。

(板书:

两个外项的积等于两个内项的积。

(4)、写比例,验证规律:

是不是任意一个比例都有这样的规律?

学生任意写一个比例并验证。

(5)、师生归纳比例的基本性质:

在比例里,两个外项的积等于两个内项的积。

这就是比例的基本性质。

3、思考分数形式的比例3/6=2/4,通过连线使学生明确:

在这样的比例中,比例的基本性质可以表达为:

把等号两端的分子、分母交叉相乘,结果相等。

4、练习:

“试一试”判断能否组成比例。

出示“3.6:

1.8和0.5:

0.25”。

让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

提问:

2.6:

1.8和0.5:

0.25能组成比例吗?

根据比例的基本性质,能判断两个比能不能组成比例吗?

学生练习:

找出比例中的内项和外项

6:

5 = 36 :

30

4:

7 = 21 :

49

学生自主表达,图中有哪些数据信息?

学生独立思考,再小组交流

学生练习:

如果用字母表示比例的四项,即a:

b=c:

d,那么这个规律可以表示成(   )

学生分析哪两个数是外项,哪两个数是内项。

比较理解比例的基本性质

学生思考后归纳:

判断时可以先把两个比看成是比例。

如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

三、巩固练习

拓展提高

1、做“练一练”

使学生明确:

可以把四个数写成两个比,根据比值是否相等作出判断。

也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在()里填上合适的数。

5:

3=( ):

6

4:

( )=( ):

5

3、做练习十第1、2题学生尝试练习后交流讨论

先让学生尝试填写,再交流明确思考方法。

四、全课小结

总结反馈

通过今天的学习,你有哪些收获?

把你发现规律的方法介绍给朋友、亲人。

五、课堂作业练习十3、4题

☆教学调整☆

教学反思:

 

课题:

比例的意义和性质2

教材类型:

苏教版    所属学科:

数学>>第十二册    

主备教师:

钱建兵    备课时间:

2008/3/13    浏览人数:

2

教案内容:

教学内容:

义务教育课程标准实验教科书数学六年级下册P45 练习十的第5—8题

教学目标:

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

教学重点:

学会解比例。

教学难点:

掌握解比例的书写格式。

设计理念:

在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。

在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

教学步骤

一、练习引入

1、小练笔:

在()里填上合适的数。

5:

4  =( ):

12

4:

( )=( ):

6

2、教师:

前面我们学习了一些比例的知识,谁能说一说怎样填空的?

3、比例的基本性质是什么?

这节课我们还要继续学习有关比例的知识。

学生回顾比例的基本性质

二、探索新知

出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

(1)读题审题,理解题意

老师帮助学生理解题意。

提问:

怎样理解“把照片按比例放大”这句话?

引导学生理解放大前后的相关线段的长度是可以组成比例

(2)引导分析,写出比例

如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?

引导学生写出含有未知数的比例式。

师介绍:

“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答

讨论:

怎样解比例?

根据是什么?

思考:

“根据比例的基本性质可以把比例变成什么形式?

教师板书:

6x=13.5×4。

“这变成了什么?

”(方程。

教师说明:

这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

(4)、板书过程,总结思路

师生把解比例的过程完整地写出来。

指名板书。

师问:

第一步计算的依据是什么?

师生总结解比例的过程。

提问:

“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?

再怎么做?

”(先根据比例的基本性质把比例变成方程。

再根据以前学过的解方程的方法求解。

 (5)、练习提高,再说思路

做“试一试”,学生独立完成,再说说解题思路。

学生读题,分析题意

学生写出含有未知数的比例式

学生小组交流,大组汇报

学生交流总结思路:

在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。

下面和以前学习的解方程的方法一样。

学生独立练习,小组说明思路。

三、巩固练习

1、做“练一练”

2、做练习十第6、7题。

3、做练习十第8题

 学生先说说按比例“缩小或放大“的含义。

再列出相应的比例式并求解。

学生独立审题并解题。

讲评时重点指导学生解决第

(2)问。

四、比较提高。

1、通过本课的学习,你有哪些收获?

2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

五、作业练习九第5、6题。

☆教学调整☆

教学反思:

课题:

认识比例尺

教材类型:

苏教版    所属学科:

数学>>第十二册    

主备教师:

钱建兵    备课时间:

2008/3/14    浏览人数:

2

教案内容:

教学内容:

义务教育课程标准实验教科书数学六年级下册P48 “练一练”和练习十一的第1、2题

教学目标:

1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教学重点:

使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

教学难点:

使学生理解比例尺的意义,会求一幅图的比例尺。

设计理念:

本课设计结合具体的情境,出示不同地图,引发学生思考。

再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教学步骤

一、设置情境

比较引入演示:

出示出示一组大小不同的中国地图。

师:

通过观察,你发现了什么?

什么变了?

什么没变?

师:

想知道地图是怎样绘制出来的吗?

今天我们就学习这方面的知识。

(板书课题:

比例尺)学生观察

学生回答。

(可能出现:

形状没变、大小变了。

二、自主探究

1、出示例6。

师:

题中要我们写几个比?

这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:

图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。

3、比例尺的意义及求比例尺的方法

师:

像刚才写出的两个比,都是图上距离和实际距离的比。

我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:

怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:

实际距离=比例尺

4、进一步理解比例尺的实际意义。

师:

我们知道这幅图的比例尺是1:

1000,也可以写成1/1000。

你是怎样理解这幅图的比例尺的?

图上距离/实际距离=比例尺

指出:

为了计算简便,通常把比例尺写成前项是1的最简单整数比。

像1:

1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺

比例尺1:

1000还可以用下面这样的形式来表示。

0    10     20  30米

师介绍线段比例尺。

问:

图上1厘米表示实际多少米?

3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。

学生读题,理解题意,尝试写出两个数量的比。

学生交流,明确方法:

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:

图上距离:

实际距离=比例尺

学生在小组里说说,再全班交流。

学生交流:

1:

1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:

图上1厘米的距离表示实际距离10米。

四、独立练习

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。

先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

五、总结评价

生活延伸

1、你学会了什么?

你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流

☆教学调整☆

教学反思:

课题:

比例尺的应用

教材类型:

苏教版    所属学科:

数学>>第十二册    

主备教师:

钱建兵    备课时间:

2008/3/17    浏览人数:

2

教案内容:

教学内容:

义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题

教学目标:

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、 使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

教学重点:

能按给定的比例尺求相应的实际距离或图上距离。

教学难点:

能按给定的比例尺求相应的实际距离或图上距离。

设计理念:

本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。

再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

教学步骤

一、复习旧知

引入新课

1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

2、什么叫比例尺?

求比例尺时要注意哪些问题?

学生练习,找出图上距离与实际距离,再写出比例尺。

二、理解明确

实践运用

1、出示例7,明确题意

找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

2、分析比例尺1:

8000所表示的意义。

引导分析:

比例尺1:

8000,说明实际距离是图上距离的8000倍。

也可以理解为比例尺1:

8000也就是图上距离1厘米表示实际距离80米。

3、尝试列式

根据对1:

8000的理解你能尝试列出算式吗?

师:

交流算法,说说为什么这样算?

(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。

4、归纳、选择、

教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

5、练习

教师引导学生思考:

根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?

你能根据这样的相等关系列出比例式?

学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

学生分析1:

8000表示的意义。

学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

学生可能出现的方法:

1、5×8000=40000……          

2、5×80=400……

3、5/X=1/8000……

图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

学生列式5/X=1/8000并计算。

三、尝试练习

巩固提高1、做“试一试”。

先选择自己合适的方法算出学校到医院的图上距离。

再引导学生讨论怎样把医院的位置在图上表示出来。

2、做“练一练”先独立解题,在组织交流

3、做练习十一第4题

引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、 做练习十一第5题。

引导学生确定合适的比例尺。

在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

在图中表示医院的位置。

学生练习后交流

四、全课总结

回顾反思

1、通过本课的学习,你又掌握了什么新的本领?

有哪些收获?

2、你还有什么疑问,或你能给同学提出什么新问题?

五、知识拓展

P51“你知道吗?

1、收集地图资料,展示给学生观看。

2、介绍国家基本比例尺地图。

学生观看

阅读后适当交流

☆教学调整☆

教学反思:

课题:

面积的变化

教材类型:

苏教版    所属学科:

数学>>第十二册    

主备教师:

钱建兵    备课时间:

2008/3/18    浏览人数:

2

教案内容:

教学内容:

九年义务教育六年制小学数学第十二册P52—53内容。

教学目标:

1、让学生经历“猜测——验证”的过程,自主发现平面图形按比例放大后面积的变化规律。

并能利用发现的规律解决实际问题。

2、进一步体会比例的应用价值,提高学习数学的兴趣。

教学重点:

1、引导学生通过观察、比较,自主发现“把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。

并能利用发现的规律解决实际问题。

2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。

教学难点:

通过观察、比较,自主发现“把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。

设计理念:

本节课首先让学生结合示意图认识到长方形的长和宽按比例放大后,面积也发生了变化。

接着让学生经历“猜测——验证”的过程自主探索面积变化规律。

当学生对变化的规律形成初步的感知后,引导学生把实验的对象扩展到正方形、三角形、圆,通过测量、计算、探索,验证此前初步感知的规律,由此让学生体验探索的乐趣和成功的喜悦。

最后组织学生运用发现的规律解决实际问题。

使学生感受到数学的价值在于应用,激发学习数学的热情。

教学步骤

一、探索长方形面积比与边长比的关系。

1、出示52页上的两个长方形。

指出:

大长方形是小长方形按比例放大后得到的图形。

师板书:

长:

3︰1 宽:

3︰1

2、这两个长方形对应的长的比和宽的比都是3︰1,估计一下,大长方形与小长方形面积的比是几比几?

3、想办法验证一下,看估计得对不对?

问:

你是怎么验证的?

你得到了什么结论?

4、如果大长方形与小长方形对应边的比是4︰1,那么面积比是几比几呢?

在书上量出它们的长和宽,写出对应边的比。

各自测量,写出比,然后交流。

学生估计大长方形与小长方形面积的比是几比几

学生想办法验证

学生交流验证的方法

学生回答

二、探索其它图形的面积与边长比的关系

1、出示按比例放大的正方形、三角形与圆。

引导观察:

估计一下,它们的对应边是按几比几的比放大的?

2、这几个图形放大后与放大前的面积相比,发生了怎样的变化?

(1)引导学生猜测。

(2)引导观察:

观察表中的数据,你发现了什么规律?

在学生充分交流的基础上揭示规律:

把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。

 3、拓展讨论:

如果把一个图形按1︰n的比缩小,缩小前后图形面积的变化规律又是什么呢?

说明:

如果把一个图形按1︰n的比缩小,缩小前后图形面积的变化规律是:

缩小前的面积与缩小后的面积的比是1:

n2用尺在书上的相关的图形中测量一下,然后确认:

正方形:

3︰1 三角形:

2︰1  圆:

4︰1

量量、算算,将相关数据填入书上53页表格中。

交流测量和计算得到的数据。

学生讨论,交流。

学生发表自己的见解

三、运用规律应用

出示书中东港小学的校园平面图,请从中选择一幢建筑或一处设施,测量并算出它的实际占地面积。

(1)测量有关图形的图上距离。

(2)计算相关图形的实际面积。

四、活动小结

通过本课的活动,你有哪些收获?

活动中你的表现如何?

学生交流。

☆教学调整☆

教学反思:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1