导数讨论含参单调性习题含详解答案doc.docx

上传人:b****7 文档编号:10373653 上传时间:2023-02-10 格式:DOCX 页数:49 大小:34.34KB
下载 相关 举报
导数讨论含参单调性习题含详解答案doc.docx_第1页
第1页 / 共49页
导数讨论含参单调性习题含详解答案doc.docx_第2页
第2页 / 共49页
导数讨论含参单调性习题含详解答案doc.docx_第3页
第3页 / 共49页
导数讨论含参单调性习题含详解答案doc.docx_第4页
第4页 / 共49页
导数讨论含参单调性习题含详解答案doc.docx_第5页
第5页 / 共49页
点击查看更多>>
下载资源
资源描述

导数讨论含参单调性习题含详解答案doc.docx

《导数讨论含参单调性习题含详解答案doc.docx》由会员分享,可在线阅读,更多相关《导数讨论含参单调性习题含详解答案doc.docx(49页珍藏版)》请在冰豆网上搜索。

导数讨论含参单调性习题含详解答案doc.docx

导数讨论含参单调性习题含详解答案doc

 

1.设函数.

 

(1)当时,函数与在处的切线互相垂直,求的值;

 

(2)若函数在定义域内不单调,求的取值范围;

 

(3)是否存在正实数,使得对任意正实数恒成立若存在,求出满

 

足条件的实数;若不存在,请说明理由.

 

2.已知函数是的导函数,为自然对数的底数.

 

(1)讨论的单调性;

 

(2)当时,证明:

 

(3)当时,判断函数零点的个数,并说明理由.

 

3.已知函数(其中,).

 

(1)当时,若在其定义域内为单调函数,求的取值范围;

 

(2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,

 

求的取值范围,如果不存在,说明理由(其中是自然对数的底数,).

 

4.已知函数,其中为常数.

 

(1)讨论函数的单调性;

 

(2)若

存在两个极值点

,求证:

无论实数

取什么值都有

.

5.已知函数

(为常数)是实数集

上的奇函数,函数

区间

上的减函数.

(1)求

的值;

(2)若

及所在的取值范围上恒成立,求

的取值范围;

 

(3)讨论关于的方程的根的个数.

6.已知函数f

x

ax

lnx,

Fx

ex

ax,其中x

0,a0.

(1)若f

x

和F

x

在区间

0,ln3

上具有相同的单调性,求实数

a的取值范围;

(2)若a

1

,且函数gx

xeax1

2axf

x的最小值为M,求M的

e2

最小值.

7.已知函数

f(x)

exm

lnx.

(1)如x

1是函数f(x)的极值点,求实数

m的值并讨论的单调性

f(x);

(2)若x

x0是函数f(x)的极值点,且f(x)

0恒成立,求实数

m的取值范围(注:

已知常数a满足alna

1

).

8.已知函数f

x

ln1

mx

x2

mx,其中0m

1.

2

(1)当m

1时,求证:

1

x0时,f

x

x3

3

(2)试讨论函数yfx的零点个数.

 

9.已知e是自然对数的底数,Fx

2ex1

xlnx,fx

ax1

3.

1)设T

x

F

x

f

x

当a

12e1时,求证:

T

x在0,

上单调递增;

2

x

1,F

x

f

x,

求实数a的取值范围

.

()若

10

.已知函数

fx

ex

ax

2

1)若a

1,求函数f

x

在区间[1,1]的最小值;

2)若a

R,讨论函数f

x

在(0,

)的单调性;

3)若对于任意的

x1,x2

(0,

),且x1

x2,

都有x2f(x1)a

x1

f(x2)a

成立,

求a的取值范围。

 

参考答案

 

1.

(1)

 

;

(2)

 

;(3)

 

 

【解析】

 

试题分析:

 

(1)本小题主要利用导数的几何意义,求出切线斜率;当

 

时,

 

 

可知

 

在处的切线斜率在处的切线互相垂直,得

 

,同理可求得,然后再根据函数

 

,即可求出结果.

 

 

(2)易知函数

 

的定义域为

 

,可得

 

,由题意,

 

值为负,由此可得

 

 

在实根,不妨设

 

 

内有至少一个实根且曲线与x不相切,即的最小

 

,进而得到,由此即可求出结果.(3)

 

,可得,令,则

 

,所以在区间内单调递减,且在区间内必存

 

,可得,(*),则在区间内单调递增,在区

 

 

内单调递减,

 

 

 

 

对任意正实数

 

,将(*)式代入上式,得恒成立,即要求

 

.使

 

恒成立,然后再

 

根据基本不等式的性质,即可求出结果.

 

试题解析:

 

(1)当时,,

 

∴在处的切线斜率,

 

由,得,∴,∴.

 

(2)易知函数的定义域为,

 

又,

 

由题意,得的最小值为负,

 

∴.(注:

结合函数图象同样可以得到),

 

 

∴,∴;

 

(3)令,其中,

 

则,

 

则,

 

则,

 

∴在区间内单调递减,且在区间内必存在实根,不妨设,

 

即,可得,(*)

 

则在区间内单调递增,在区间内单调递减,

 

∴,,

 

将(*)式代入上式,得.

 

根据题意恒成立,

 

又∵,当且仅当时,取等号,

 

∴,

 

∴,代入(*)式,得,

 

即,又,

 

∴,∴存在满足条件的实数,且.

点睛:

对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值

 

的方法,一般通过变量分离,将不等式恒成立问题转化为求函数的最值问题,然后再构造辅

 

助函数,利用恒成立;恒成立,即可求出参数范

 

围.

 

2.

(1)①当时,在上为减函数;②当时,的减区间为,增

 

区间为;

(2)证明见解析;(3)一个零点,理由见解析.

 

【解析】

 

试题分析:

(1)讨论函数单调性,先求导,当时,,故在

 

上为减函数;当时,解可得,故的减区间为,增区间为;

(2)

 

根据,构造函数,设,,当时,,所以

 

是增函数,,得证;(3)判断函数的零点个数,需要研究函

 

数的增减性及极值端点,由

(1)可知,当时,是先减再增的函数,其最小值为

 

,而此时,且,故恰有两

 

个零点,

 

从而得到的增减性,当时,;当时,;当

 

时,,从而在两点分别取到极大值和极小值,再证明极大值

 

,所以函数不可能有两个零点,只能有一个零点.

 

试题解析:

 

(1)对函数求导得,

 

 

①当时,,故在上为减函数;

 

②当时,解可得,故的减区间为,增区间为;

 

(2),设,则,

 

易知当时,,

 

 

(3)由

(1)可知,当时,是先减再增的函数,

 

其最小值为,

 

而此时

 

∵当

 

时,

 

,且

 

;当

 

,故

 

时,

 

恰有两个零点

 

;当

 

 

时,

 

 

∴在两点分别取到极大值和极小值,且,

 

由知,

 

∴,

 

 

,∴,但当

 

时,

 

,则

 

,不合题意,所以

 

 

故函数

的图象与轴不可能有两个交点.

 

∴函数

 

只有一个零点.

 

3.

(1);

(2)存在,且.

 

【解析】

 

试题分析:

(1)当时,首先求出函数的导数,函数的定义域是,得到

 

,分和两种情况讨论讨论二次函数恒成立的问题,得到的取值

 

范围;

(2)

 

时,当满足函数的最小值大于

 

,分

 

 

0,即得到

 

两种情况讨论函数的单调性,

 

的取值范围.

 

若能满足当

 

试题解析:

(1)由题

 

①当时,知

 

②当时,只有对于

 

,则

 

是单调递减函数;

 

,不等式

 

恒成立,才能使

 

为单调函数,只需

 

,解之得或,此时.

 

综上所述,的取值范围是

 

(2),其中.

 

()当时,,于是在上为减函数,则在上也为减函数.

 

知恒成立,不合题意,舍去.

 

()当时,由得,列表得

 

0

 

最大值

 

①若,即,则在上单调递减.

 

知,而,

 

于是恒成立,不合题意,舍去.

 

②若,即.

 

则在上为增函数,在上为减函数,

 

要使在恒有恒成立,则必有

 

 

,所以

 

由于

 

,则

 

,所以

 

.

 

综上所述,存在实数,使得恒成立.

 

【点睛】导数问题经常会遇见恒成立的问题:

 

(1)根据参变分离,转化为不含参数的函数的最值问题;

 

(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为

 

,若

 

恒成立

 

 

(3)若

 

4.

(1)当

 

恒成立,可转化为

 

时,在区间

.

 

上单调递增;

 

当时,在上单调递减,在

递增;

 

(2)见解析.

 

【解析】试题分析:

(1)先求导数,研究导函数在定义域上零点情况,本题实质研究

 

在上零点情况:

当方程无根时,函数单调递增;当方程有两个相等

 

实根时,函数单调递增;当方程有两个不等实根时,比较两根与定义区间之间关系,再确定

 

上单调

 

单调区间,

(2)先由

(1)知,且两个极值点满足.再代入化简

 

 

利用导数研究

 

单调性,最后

 

根据单调性证明不等式.

 

试题解析:

(1)函数的定义域为

 

.

 

,记,判别式.

 

①当即时,恒成立,,所以在区间上单

调递增.

 

②当或时,方程有两个不同的实数根,记,

 

,显然

 

(ⅰ)若,图象的对称轴,.

 

两根在区间上,可知当时函数单调递增,,所以,

 

所以在区间上递增.

 

(ⅱ)若,则图象的对称轴,.,所以

 

,当时,,所以,所以在上单调递减.当

 

或时,,所以,所以在上单调递增.

 

综上,当时,在区间上单调递增;当时,在

 

上单调递减,在上单调递增.

 

(2)由

(1)知当时,没有极值点,当时,有两个极值点,且

 

.

 

 

∴又,

 

.记,,则

 

,所以

 

 

时单调递增,

 

,所以

 

 

所以

 

.

 

5.

(1);

(2);(3)详见解析.

 

【解析】

 

试题分析:

(1)根据奇函数定义可得,再根据恒等式定理可得.

(2)

 

由函数是区间上的减函数,得其导函数恒非正,即最小值,

 

而在恒成立等价于,从而有

 

对恒成立,再根据一次函数单调性可得只需端点处函数值非负

 

即可,解不等式组可得的取值范围(3)研究方程根的个数,只需转化为两个函数,

 

交点个数,先根据导数研究函数

 

上下平移可得根的个数变化规律

 

试题解析:

(1)是奇函数,则

 

∴,即,

 

∴,∴.

 

(2)由

(1)知,∴,

 

图像,再根据二次函数恒成立,

 

∴,

 

又∵在上单调递减,

 

∴,

 

且对恒成立,

 

即对恒成立,

 

∴,

 

∵在上恒成立,

 

∴,

 

即对恒成立,

 

令,则,

 

∴,而恒成立,

 

∴.

 

(3)由

(1)知,∴方程为,

 

令,,

 

∵,

 

当时,,∴在上为增函数;

 

当时,,∴在上为减函数;

 

当时,,而,

 

∴函数、在同一坐标系的大致图象如图所示,

 

∴①当,即时,方程无解;

 

②当,即时,方程有一个根;

 

③当

,即

时,方程有两个根.

点睛:

对于求不等式成立时的参数范围问题,

在可能的情况下把参数分离出来,

使不等式一

端是含有参数的不等式,另一端是一个区间上具体的函数,

这样就把问题转化为一端是函数,

另一端是参数的不等式,便于问题的解决

.但要注意分离参数法不是万能的,如果分离参数

后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法

.

6.

(1)M的最小值为0

.

(2)

3.

【解析】

试题分析:

(1)由f′x

a

1

ax

1,F′x

ex

a,x0

f′x

0在0,

x

x

恒成立

fx在0,

上单调递减

当1

a0时,F′x

0,即F

x在0,

 

上单调递增,不合题意;

 

当a1时,利用导数工具得Fx的单调减区间为0,lna,单调增区间为

 

ln

a,

fx和F

x在区间

0,ln3上具有相同的单调性

ln

a

ln3

a

3

a的取

值范围是

3

(2)由g′x

ax1eax1

1

0

a

1lnx,设

x

x

px

1

lnx,p′x

lnx2

x

x2

px

 

gx

pe2

1

a

1lnx

eax11

0,再根据单调性

min

e2

x

x

1

ming

a

 

设t

1

0,e2,g

1

ht

t

lnt10te2

h′t

11

0,ht

a

a

e2

e2

t

在0,e2

上递减ht

he2

0

M的最小值为0.

 

试题解析:

(1)f′x

a

1

ax

1

F′x

ex

a,x0,

x

x

Qa

0,f′x0在0,

上恒成立,即

fx在0,

上单调递减.

当1

a0时,F′x

0,即F

x

在0,

上单调递增,不合题意;

当a

1时,由F′x

0,得x

ln

a,由F′x

0,得0xlna.

∴F

x的单调减区间为

0,ln

a

,单调增区间为

ln

a,.

 

Qfx和Fx在区间0,ln3上具有相同的单调性,

 

∴ln

a

ln3,解得a

3,

综上,a的取值范围是

3.

(2)g′x

eax1

axeax

1

a

1

ax

1

eax11

x

x

由eax1

1

0得到a

1lnx,设px

1lnx,p′x

lnx2

x

x

x

x2

当x

e2时,p′x

0;当0x

e2时,p′x0.

从而p

x在

2

2

上递增.∴px

2

1

0,e

上递减,在

e,

min

pe

2.

1

1

lnx

1

e

当a

时,a

ax

1

0,

2

x

,即e

x

e

在0,

1

上,ax

1

0,g′x

0,g

x

递减;

a

1,

上,ax

1

0,g′x

0,g

x递增.∴g

xmin

g

1,

a

a

设t

1

0,e2,g

1

ht

t

lnt10te2,

a

a

e2

h′t

1

1

0,ht

0,e2

上递减.∴ht

he2

0;

e2

t

∴M的最小值为0

.

考点:

1、函数的单调性;2、函数的最值;

3、函数与不等式.

 

【方法点晴】本题考查函数的单调性、函数的最值、函数与不等式,涉及分类讨论思想、数

 

形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较

 

强,属于较难题型.利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式

 

的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新

 

函数的单调性和最值来解决,当然要注意分类讨论思想的应用.

7.

(1)m

1,

f(x)

(0,1)

上单调递减,在

(1,

m

[

alna,

.

上单调递增;

(2)

【解析】

试题分析:

(1)由x

1是函数f(x)的极值点,得

f

1

0可得m得值,由导数和单调性

的关系得其单调区间;

(2)由题意知f'(x)

exm

1

,设h(x)

exm

1

,知hx0

x

x

hx单调递增,即

x

x0是f'(x)

0在(0,

)上的唯一零点,得

m

x0lnx0,

fxmin

f

x0

,使得

f

x0

0

即可,结合alna

1

,得参数m范围.

试题解析:

(1)∵x

1

是函数f(x)的极值点,∴f'

(1)

0

e1m1

0.

∴m

1,f'(x)ex1

1xex1

1.

x

x

令g(x)xex1

1,g'(x)ex1

xex1

(x1)gex1

0,

∴g(x)在(0,

)上单调递增,g(x)

g(0)1,g

(1)

0.

∴当x

(0,1),g(x)

0;当x

(1,

),g(x)

0.

∴f(x)在(0,1)上单调递减,在

(1,

)上单调递增,

此时,当x

1时f(x),取极小值.

(2)f'(x)exm

1,设h(x)exm

1,

1

x

x

则h'(x)

ex

m

0.∴h(x)在(0,

)上单调递增,

x2

∴f'(x)在(0,

)上单调递增.

 

∵xx0是函数f(x)的极值点,

 

∴xx0是f'(x)

0在(0,

)上的唯

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职业技术培训

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1