工业设计机械基础习题解答.ppt

上传人:wj 文档编号:30872121 上传时间:2024-09-13 格式:PPT 页数:66 大小:9.54MB
下载 相关 举报
工业设计机械基础习题解答.ppt_第1页
第1页 / 共66页
工业设计机械基础习题解答.ppt_第2页
第2页 / 共66页
工业设计机械基础习题解答.ppt_第3页
第3页 / 共66页
工业设计机械基础习题解答.ppt_第4页
第4页 / 共66页
工业设计机械基础习题解答.ppt_第5页
第5页 / 共66页
点击查看更多>>
下载资源
资源描述

工业设计机械基础习题解答.ppt

《工业设计机械基础习题解答.ppt》由会员分享,可在线阅读,更多相关《工业设计机械基础习题解答.ppt(66页珍藏版)》请在冰豆网上搜索。

工业设计机械基础习题解答.ppt

工业设计机械基础习题解答工业设计机械基础习题解答主编阮宝湘目目录录第一篇第一篇工程力学基础工程力学基础第一章第一章工程力学的基本概念工程力学的基本概念第二章第二章产品与构件的静力分析产品与构件的静力分析第三章第三章构件与产品的强度分析构件与产品的强度分析第四章第四章构件的刚度、压杆稳定和动载荷问题构件的刚度、压杆稳定和动载荷问题第二篇第二篇机械设计基础机械设计基础第六章第六章机械零件基础机械零件基础第七章第七章常用机构常用机构第八章第八章机械传动基础机械传动基础第一章第一章工程力学的基本概念工程力学的基本概念11-6刚体在A、B两点分别受到F1、F2两力的作用,如图1-36所示,试用图示法画出F1、F2的合力R;若要使该刚体处于平衡状态,应该施加怎样一个力?

试将这个力加标在图上。

1-7A、B两构件分别受F1、F2两力的作用如图1-37所示,且F1=F2,假设两构件间的接触面是光滑的,问:

A、B两构件能否保持平衡?

为什么?

图1-37题1-7图答答A、B两构件不能保持平衡。

理由:

A、B两构件接触面上的作用力必与接触面垂直,与F1、F2不在同一条线上。

解解合力R用蓝线画出如图;平衡力用红线画出如图。

1118指出图1-38中的二力构件,并画出它们的受力图。

图1-38题1-8图解解图1-38aAB、AC均为二力构件,受力图如下。

图1-38b曲杆BC为二力构件,受力图如下。

图1-38c曲杆AC为二力构件,受力图如下。

1119检查图1-39的受力图是否有误,并改正其错误(未标重力矢G的杆,其自重忽略不计。

图1-39b中的接触面为光滑面)。

图1-39题1-9图解解在错误的力矢线旁打了“”符号,并用红色线条改正原图中的错误如下。

11110画出图1-40图中AB杆的受力图(未标重力矢G的杆,其自重忽略不计。

各接触面为光滑面)。

图1-40题1-10图解解图1-40a图1-40b图1-40c图1-40d11111画出图1-41各图中各个球的受力图。

球的重量为G,各接触面均为光滑面。

图1-41题1-11图解解图1-41a图1-41b图1-41c图1-41d11112画出图1-42a、b中各个杆件的受力图(未标重力矢G的杆,其自重忽略不计。

各接触面均为光滑面)。

图1-42题1-12图1-13固定铰支座约束反力的方向一般需根据外载荷等具体条件加以确定,但特定情况下却能直接加以判定。

请分析图1-43a、b、c三图中固定铰支座A,如能直接判定其约束反力的方向(不计构件自重),试将约束反力的方向在图上加以标示。

(提示:

利用三力平衡汇交定理)图1-43题1-13图解解图1-42a图1-42b解解图1-43a111-14画出图1-44所示物系中各球体和杆的受力图。

图1-44题1-14图图1-43b图1-43cBC为二力杆,可得NC的方向,再用三力平衡汇交定理。

此为两端受拉的二力杆解解各球体受力图如右111-15重量为G的小车用绳子系住,绳子饶过光滑的滑轮,并在一端有F力拉住,如图1-45所示。

设小车沿光滑斜面匀速上升,试画出小车的受力图。

(提示:

小车匀速运动表示处于平衡状态)图1-45题1-15图1-16分别画出图1-46中梁ABC、梁CD及组合梁ABCD整体的受力图。

(提示:

先分析CD梁,可确定C处的作用力方向;然后梁ABC的受力图才能完善地画出)图1-46题1-16图解解小车受力图解解组合梁ABCD的受力图CD梁的受力图需用三力平衡汇交定理确定NC的方向ABC梁的受力图(在NC方向已确定的基础上)第二章第二章产品与构件的静力分析产品与构件的静力分析12-1图2-55中各力的大小均为1000N,求各力在x、y轴上的投影。

解解先写出各力与x轴所夹锐角,然后由式2-1计算力在轴上的投影。

力F1F2F3F4F5F6与x轴间的锐角45060604530力的投影FxFcos707N-1000N500N-500N707N-866N力的投影FyFsin707N0-866N-866N707N500N2-2图2-56中各力的大小为F110N,F26N,F38N,F412N,试求合力的大小和方向。

解解1)求各力在图示x轴和y轴上的投影F1x10Ncos010NF1y10Nsin00F2x6Ncos900F2y6Nsin06NF3X-8Ncos45-5.657NF3y8Nsin455.657NF4x-12Ncos30-10.392NF4y-12Nsin30-6N2)求各力投影的代数和RxFxF1xF2xF3xF4x-6.047NRyFyF1yF2yF3yF4y5.657N3)根据式(2-4)求出合力R的大小和方向合力R的大小图2-56题2-2图图2-55题2-1图11合力R与x轴所形成的锐角由于Rx0,Ry0,根据合力指向的判定规则可知,合力R指向左上方。

2-3图2-57中,若F1和F2的合力R对A点的力矩为MA(R)60Nm,F110N,F240N,杆AB长2m,求力F2和杆AB间的夹角。

图2-57题2-3图解解根据力矩的定义,用式(2-5)计算MA(R)MA(F1)MA(F2)F12mF2(2msin)(10N2m)(40N2msin)20Nm(80Nm)sin代入已知值MA(R)60Nm得到sin0.5,即30。

2-4提升建筑材料的装置如图2-58所示,横杆AB用铰链挂在立柱的C点。

若材料重G5kN,横杆AB与立柱间夹角为60时,试计算:

1)力F的方向铅垂向下时,能将材料提升的力值F是多大?

2)力F沿什么方向作用最省力?

为什么?

此时能将材料提升的力值是多大?

图2-58题2-4图解解1)当拉力F对铰链C之矩与重物G对铰链C之矩相等,可提升重物。

此时MC(F)Mc(G),即F3msin605kN1msin60,移项得F5kN31.67kN。

2)当拉力F与横杆垂直时,力臂最大,最省力。

此时F3m5kN1msin605kN1m0.866,移项得F(5kN10.866)31.44kN。

112-5图2-59所示物体受平面内3个力偶的作用,设F1F1200N,F2F2600N,M100Nm,求合力偶矩。

图2-59题2-5图解解由式(2-7)得:

力偶(F1,F1)的力偶矩M1F11m200N1m200Nm力偶(F2,F2)的力偶矩M2F20.25msin30600N0.5m300Nm由式(2-8):

M合M1M2M(200300100)Nm500Nm合力偶矩为正值,表示它使物体产生逆时针的转动。

2-6试将图2-60中平面力系向O点简化。

图2-60题2-6图解解1)求主矢量R设力值为400N、100N、500N的三力在x轴的投影为1x、2x、3x,在y轴的投影为1y、2y、3y,则1x400N,2x0,1y0,2y-100N,Rx1x2x3x400N0400N0,Ry1y2y3y0100N300N200N主矢量R在x、y轴的投影主矢量R的大小主矢量R与x轴的夹角90。

RY为正值,为0,可见主矢量R指向正上方。

12)求主矩MoMo400N0.8m100N2m400N0300N2m0.6m260Nm主矩为正值,逆时针转向。

2-7某机盖重G20kN,吊装状态如图2-60所示,角度20,30,试求拉杆AB和AC所受的拉力。

图2-61题2-7图解解AB和BC都是受拉二力杆,两杆拉力FAC、FAB与重G组成平面汇交力系,在水平x轴、铅垂y轴坐标系中有平衡方程:

Fx0,FACsinFABsin0

(1)Fy0,FACcosFABcosG0

(2)由

(1)

(2)得到FAC(sin20sin30)FAB(3)将(3)代入

(2)得:

代入数据即得:

FAB13.05kN,FAC8.93kN。

2-8夹紧机构如图2-62所示,已知压力缸直径d120mm,压强p60103Pa,试求在位置30时产生的夹紧力P。

图2-62题2-8图解解1)求杆AD对铰链A的压力FAD汇交于铰链A的汇交力系平衡方程x轴水平,y轴铅垂:

Fx0,FACcos30FADcos00

(1)Fy0,FABFACsin30FADsin300

(2)由压力缸中的压力知:

FABpd240.68kN(3)联解可得:

FADFAC0.68kN。

112)由滑块D的平衡条件求夹紧力FFx0,FADsin30F0(4)由(4)得到夹紧力F0.34kN。

2-9起重装置如图3-63所示,现吊起一重量G1000N的载荷,已知30,横梁AB的长度为l,不计其自重,试求图2-63a、b中钢索BC所受的拉力和铰链A处的约束反力。

图2-63题2-9图解解1)图2-63a中AB为二力杆,汇交于B的三力有平衡方程x轴水平,y轴铅垂:

F0,FABTBCcos300

(1)F0,TBCsin30G0

(2)由

(2),得钢索BC所受的拉力TBCGsin302000N(3)由(3)、

(1),得铰链A对AB杆的约束反力FABTBCcos301732N2)图2-63b中AB不是二力杆,铰链A处的约束反力分解为水平分力FAX和铅垂分力FAY,有平衡方程:

MA(F)0TClsinG0.8l0

(1)MB(F)0Gl0.8lFAYl0

(2)Fx0,FAxTBCcos300(3)由

(1),得钢索BC所受的拉力TBC0.8Gsin301600N由

(2)得铰链A对AB杆的铅垂约束分力FAY0.2G200N由(3)得铰链A对AB杆的水平约束分力FaxTBCcos301386N。

112-10水平梁AB长l,其上作用着力偶矩为M的力偶,试求在图2-64a、b两种不同端支情况下支座A、B的约束反力。

不计梁的自重。

图2-64题2-10图解解1)图2-64a情况反力方向用红色表示支座A、B的约束反力FAFB,设FFAFB,由平衡方程M0FlM0,得到FAFBFMl2)图2-64b情况反力方向用红色表示支座A、B的约束反力FAFB,设FFAFB,由平衡方程M0FlcosM0,得到FAFBFMlcos2-11梁的载荷情况如图2-65所示,已知F450N,q10N/cm,M300Nm,a50cm,求梁的支座反力。

解解各图的支座反力已用红色线条标出,然后取梁为分离体,列平衡方程,求解并代入数据,即得结果。

图2-65题2-11图111)图2-65a情况MA(F)0,(FB3a)FaM0

(1)Fy0,FBFFA0

(2)由

(2):

FBFFA(3)联解得:

FA(M2Fa)3a(30000Ncm2450N50cm)(350cm)100N(4)将(4)代入(3)得:

FB350N。

2)图2-65b情况MA(F)0,(FB2a)Faqa(2a0.5a)0

(1)Fy0,FBFFAqa0

(2)由

(1):

FB(F2.5qa)2850N(3)将(3)代入

(2)得:

FA100N。

3)图2-65c情况MA(F)0,(FB3a)(2qaa)(F2a)0

(1)Fy0,FAFBF2qa0

(2)由

(1):

FB(2F2qa)3633N(3)将(3)代入

(2)得:

FA817N。

4)图2-65d情况Fy0,FAFqa0

(1)MA(F)0,MAMqa(a2)(F2a)0

(2)由

(1):

FAFqa950N由

(2):

MAqa(a2)(F2a)M275N。

112-12旋转起重装置如图2-66所示,现吊重G600N,AB1m,CD3m,不计支架自重,求A、B两处的约束反力。

图2-66题2-12图MA(F)0,(FB1m)(G3m)0

(1)Fx0,FAxFB0

(2)Fy0,FAyG0(3)解解支承A处视通固定铰链,支座反力已用红色线条标出,根据曲梁的受力图列平衡方程求解。

(1):

FB3G1.8kN,由

(2):

FAxFB1.8kN,由(3):

FAyG600N。

2-13两种装置如图2-67a、b所示,在杆AB的B端受铅垂力F2kN作用,求图示两种情况下绳子CD所受的拉力及固定铰支座A的反力。

杆AB的自重不计。

图2-67题2-13图解解两图的支座反力已用红色线条标出,然后取杆AB为分离体,列平衡方程求解。

1)图2-67a情况MA(F)0,(TCDAE)(F2m)0

(1)Fx0,FAxTCDcos0

(2)Fy0,FAyTCDsin0(3)几何关系:

tan(0.751.0)0.75,查表得36.9,sin0.6,cos0.8。

11可得m(4)(4)代入(3)得:

TCD(F2m0.8m)5kN(5)(5)代入

(2)得:

FAxTCDcos4kN,(5)代入(3)得:

FAyFTCDsin1kN。

2)图2-67b情况MA(F)0,(TCD1m)(F2msin30)0

(1)Fx0,FAxTCDcos300

(2)Fy0,FAyTCDsin30F0(3)由

(1):

TCDF2kN(4)(4)代入

(2)得:

FAxTCDcos301.732kN,(4)代入(3)得:

FAyFTCDsin301kN。

2-14运料小车及所载物料共重G4kN,重心在C点,已知a0.5m,b0.6m,h0.8m,如图2-68所示。

试求小车能沿30斜面轨道匀速上升时钢丝绳的牵引力T及A、B轮对轨道的压力。

图2-68题2-14图解解斜面反力FA、FB已用红色画出,取A为坐标原点、y轴与反力方向一致建立坐标系,列平衡方程求解。

GxGcos600.5G2kN

(1)GyGcos303.464kN

(2)Fx0,TGx0(3)MA(F)0,(FB2a)Gxh0.6TGya0(4)Fy0,FAFBGy0(5)

(1)、

(2)代入(4)得:

FA2.132kN(6)

(2)、(6)代入(5)得:

FB1.332kN平衡方程由几何关系112-15卷扬机结构如图2-69所示,重物置于小台车C上,其重量G2kN,小台车装有A、B两轮,可沿导轨DE上下运动,求导轨对A、B两轮的约束反力。

图2-69题2-15图解解导轨对A、B两轮的约束反力FA、FB已用红色画出,建立坐标系如图,列平衡方程求解。

Fx0,NANB0

(1)Fy0,TG0

(2)MB(F)0,(G300)(NA800)0(3)联解并代入数据,得NANBG(300800)0.75kN。

2-16求起重机在图2-70所示位置时,钢丝绳BC所受的拉力和铰链A的反力。

已知AB6m,G8kN,吊重Q30kN,角度45,30。

图2-70题2-16图解解钢丝绳受的拉力和铰链A的反力已用红色画出。

设吊臂AB长l,建立坐标系如图,列平衡方程求解。

MA(F)0,Tlcos30(G0.5lcos45)Qlcos450

(1)Fx0,RAxTcos(4530)0

(2)Fy0,RAyTsin(4530)GQ0(3)由

(1)直接可得:

T48.08kN(4)(4)代入

(2)得:

RAx46.44kN(5)(4)、(5)代入(3)得:

RAy50.44kN。

112-17起重机置于简支梁AB上如图2-71所示,机身重G5kN,起吊物重P1kN,梁自重G13kN,作用在梁的中点。

求A、B的支座反力,及起重机在C、D两点对梁的压力。

图2-71题2-17图图2-71题2-17图解解分两步求解:

分析起重机,求解NC、ND,分析梁,求解NA、NB。

各反力已用红色在图、上标出。

分析起重机MC(F)0,(ND1)(G0.5)(P2.5)0

(1)Fy0,NCNDP0

(2)由

(1)直接可得:

ND5kN(3)(3)代入

(2)得:

NC1kN(4)分析梁MA(F)0,(NB5)(G12.5)(NC1)(ND2)0

(1)Fy0,NANBG1NCND0

(2)由

(1)直接可得:

NB3.7kN(3)(3)代入

(2)得:

NA5.3kN(4)112-18力F作用于A点,空间位置如图2-72所示,求此力在x、y、z轴上的投影。

图2-72题2-18图解解力F与z轴之间的夹角30,力F在xOy平面上的投影与x轴之间的夹角45,因此有FxFsincos0.3536F,FyFsinsin0.3536F,FzFcos0.866F。

2-19绞车的正、侧视图如图2-73所示,已知G2kN,鼓轮直径d160mm,试求提升重物所需作用于手柄上的力值F和此时A、B轴承对于轴AB的约束反力。

图2-73题2-19图解解由侧视图的力矩平衡条件求手柄上的力FF200mmG(d2)2kN(160mm2),得到F0.8kN。

求铅垂平面内的轴承反力NA铅、NB铅F在铅垂平面内的分力Fsin300.4kN,MA(F)0,(NB铅500)(G300)(Fsin30620)0得到NB铅1.696kN。

NA铅GFsin30NB铅0.704kN。

求水平平面内的轴承反力NA水、NB水F在水平平面内的分力Fcos300.693kN,MA(F)0,(NB水500)(Fcos30620)0,得到NB水0.86kN。

NA水Fcos30NB铅0.167kN。

112-20电机通过联轴器带动带轮的传动装置如图2-74所示,已知驱动力偶矩M20Nm,带轮直径d160mm,尺寸a200mm,传动带紧边、松边的拉力有关系T2t(两力的方向可看成互相平行),不计轮轴自重,求A、B两轴承的支座反力。

图2-74题2-20图解解求传动带紧边、松边的拉力T、t传动轴的旋转力矩平衡条件:

(Tt)(d2)M,以T2t代入即得:

t250N,T500N。

求A、B两轴承的支座反力NA、NB由AB轴结构与受力对称的条件,可直接得到:

NANB(Tt)2375N。

2-21试求图2-75所示不等宽T字形截面的形心位置,图中长度单位为mm。

图2-75题2-21图解解将此组合图形分为上部竖直矩形和下部横置矩形两块简单图形,和的形心C1、C2的位置如图所标。

式(2-24)中的相关数据如下:

A110mm(10020)mm800mm2,A220mm80mm1600mm2,AA1A22400mm2,x1x20,y120mm(802)mm60mm,y2(202)mm10mm。

T形截面的形心坐标:

xC0,112-22计算图2-76所示平面图形的形心位置,图中100的圆形为挖空的圆孔。

图2-76题2-22图解解由于图形的对称性,可知形心的y坐标为:

yc0。

设完整矩形为图形,挖空的圆孔为图形,则有:

求图形形心的x坐标xCA150030015104,A2d24(4)104,AA1A2,x1(5002)250,x2400,代入得到xC217.66。

2-23已知物体重量G200N,F100N,30,物体与支承面间的摩擦因数为S0.5,分析在图2-77所示的3种情况下。

物体处于何种状态、所受摩擦力各为多大?

图2-77题2-23图解解1)图2-77a情况物体间的正压力(法向反力)NGFsin30250N,右推物体的力FxFcos3086.6N,最大静摩擦力FmaxSN125N,对比与结论推力Fx最大静摩擦力Fmax,物体静止不动。

112)图2-77b情况3)图2-77c情况物体间的正压力(法向反力)NG200N物体间的正压力(法向反力)NGFsin30150N,右推物体的力F100N,最大静摩擦力FmaxSN100N,最大静摩擦力FmaxSN75N,对比与结论右推物体的力F最大静摩擦力Fmax,物体处于匀速移动与不动的临界状态。

对比与结论拉力F最大静摩擦力Fmax,物体向右运动。

右拉物体的力FxFcos3086.6N2-24图2-78所示滑块斜面间的摩擦因数S0.25,滑块重G1kN,斜面倾角10,问:

滑块是否会在重力作用下下滑?

要使滑块沿斜面匀速上升,应施加的平行于斜面的推力F是多大?

图2-78题2-24图解解滑块是否会在重力作用下下滑?

摩擦因数对应的摩擦角mactanSactan0.2514.04,m,符合自锁条件,滑块不会因重力而下滑。

要使滑块沿斜面匀速上升,推力F是多大?

滑块斜面间的正压力NGcos10,最大静摩擦力FmaxSNSGcos10,滑块重力沿斜面向下的分力Gsin10,使滑块沿斜面匀速上升的推力条件:

FFmaxGsin10SGcos10Gsin100.42kN。

112-25双闸瓦式电磁制动器如图2-79所示,制动轮直径D500mm,受一主动力偶矩M100Nm的作用,设制动块与制动轮间的摩擦因数S0.25,求制动时加在制动块上的压力值F至少需要多大?

图2-79题2-25图解解在以压力F制动时,制动块与轮间的最大静摩擦力为FmaxSF,实现制动的条件为MFmaxDSFD,可求得压力值F(MSD)800N0.8kN。

2-26重G1500N的物体压在重G2200N的钢板上如图2-80所示,物体与钢板间的摩擦因数为S10.2,钢板与地面间的摩擦因数为S20.25,问:

要抽出钢板,拉力F至少需要多大?

图2-80题2-26图解解设钢板与物体间的最大静摩擦力为Fmax1,钢板与地面间的最大静摩擦力为Fmax2,则能抽出钢板的最小拉力值为FFmax1Fmax2Fmax1S1G1Fmax2S2(G1G2),FS1G1S2(G1G2)(0.2500N)0.25(500N200N)275N。

112-27重量为G的圆球夹在曲臂杆ABC与墙面之间,如图2-81所示,圆球半径为r,圆心比A点低h,各接触面间的摩擦因数均为S,求:

维持圆球不下滑的最小力值F。

图2-81题2-27图解解先分析圆球圆球铅垂方向为三力平衡:

重力G及D、E两点向上的摩擦力FD、FE。

由结构与受力对称的条件可知:

FEFDG2

(1)再分析曲杆ABC曲杆在E受正压力NE(向右)和摩擦力FE作用。

FE与FE等值反向(向下),FEFEG2

(2)且FESNE(3)MA(F)0,(NEh)(FFE)2r0(4)联解

(2)、(3)、(4)即得2-28重量为G的均质箱体底面宽度为b,其一侧受水平力F作用,F距地面高度为h,如图2-82所示,箱体与地面间的摩擦因数为S,若逐渐加大力F,问:

欲使箱体向前滑动而不会在推力下翻倒,高度h应满足什么条件?

图2-82题2-28图解解箱重G对箱底左边的顺时针力矩为MA(G)G(b2),推力F对箱底左边的逆时针力矩为MA(F)Fh,箱体不会在推力下翻倒的条件为:

MA(F)MA(G)即Fh2Gb

(1)而推力使箱体向前滑动的临界条件为FSG

(2)联解

(1)、

(2)即得hb2S。

112-29砖夹的示意结构如图2-83所示,爪子AB与CD在C铰接,上提时力F作用于砖夹的中心线上,爪子与砖间的摩擦因数为S0.5,不计砖夹自重,问:

尺寸b满足什么条件才能保证砖夹正常工作?

图2-83题2-29图解解砖夹正常工作的条件提砖时应该有FG

(1)砖能夹住不滑落的临界条件FAmaxFDmaxG,由(五块)砖受力的对称性知FAmaxFDmaxG2

(2)正压力与最大摩擦力的关系FAmaxSNA(3)分析爪子ABC的平衡条件爪子在A受到的最大摩擦力FAmaxFAmaxSNA(4)联解以上各式即得b105。

2-30图2-84所示手摇起重器具的手柄长为l360mm,操作者在柄端施加作用力F120N,若操作起重器具以转速n4rpm作匀速转动,求操作者在10min内做的功W。

图2-84题2-30图解解由公式(2-32)功WM

(1)本题中,力矩MF360mm43.2Nm

(2)转角2410251.3(3)

(2)、(3)代入

(1)得W10837Nm10.84kJ。

(5)MC(F)0112-31在直径D

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职业技术培训

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1