《概率论与数理统计》分章复习题.docx

上传人:b****8 文档编号:10296314 上传时间:2023-02-09 格式:DOCX 页数:19 大小:31.32KB
下载 相关 举报
《概率论与数理统计》分章复习题.docx_第1页
第1页 / 共19页
《概率论与数理统计》分章复习题.docx_第2页
第2页 / 共19页
《概率论与数理统计》分章复习题.docx_第3页
第3页 / 共19页
《概率论与数理统计》分章复习题.docx_第4页
第4页 / 共19页
《概率论与数理统计》分章复习题.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

《概率论与数理统计》分章复习题.docx

《《概率论与数理统计》分章复习题.docx》由会员分享,可在线阅读,更多相关《《概率论与数理统计》分章复习题.docx(19页珍藏版)》请在冰豆网上搜索。

《概率论与数理统计》分章复习题.docx

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章随机事件与概率

一、选择题

1、以A表示甲种产品畅销,乙种产品滞销,则A为(  ).

(A)甲种产品滞销,乙种产品畅销  (B)甲、乙产品均畅销(C)甲种产品滞销   (D)甲产品滞销或乙产品畅销

2、设A、B、C为三个事件,则A、B、C中至少有一个发生的事件可以表示为(  ).(A)ABC  (B)A?

B?

C  (C)A?

B?

C  (D)ABC3、已知事件A,B满足AB?

?

(其中?

是样本空间),则下列式(  )是错的.

(A)A?

B  AB?

?

  (C)A?

B  B?

A

4、设A、B、C为三个事件,则A、B、C中至少有一个不发生的事件可以表示为(  ).(A)ABC  ABC  (C)A?

B?

C  ABC5、假设事件A,B满足P(B|A)?

1,则(  ).

(A)A是必然事件(B)P(B|A)?

0(C)A?

B  (D)A?

B6、设P(AB)?

0,则有(  ).

(A)A和B不相容(B)A和B独立(C)P(A)=0或P(B)=0(D)P(A-B)=P(A)7、设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是.A与B不相容  A与B相容P(AB)?

P(A)P(B)  P(A?

B)?

P(A)8、设B?

A,则下面正确的等式是(  ).

(A)P(AB)?

1?

P(A)  (B)P(B?

A)?

P(B)?

P(A)  (C)P(B|A)?

P(B)  (D)P(A|B)?

P(A)9、事件A,B为对立事件,则下列式子不成立的是(  ).

(A)P(AB)?

0  P(AB)?

0  (C)P(A?

B)?

1  P(A?

B)?

110、对于任意两个事件A,B,下列式子成立的是(  ).

(A)P(A?

B)?

P(A)?

P(B)  P(A?

B)?

P(A)?

P(B)?

P(AB)

1

(C)P(A?

B)?

P(A)?

P(AB)  P(A?

B)?

P(A)?

P(AB)11、设事件A,B满足P(AB)?

1,则有.

B是必然事件  A是必然事件  A?

B?

?

(空集)

P(A)?

P(B)

12、设A,B为两随机事件,且B?

A,则下列式子正确的是.P(A?

B)?

P(A);  P(AB)?

P(A);P(B|A)?

P(B);  P(B?

A)?

P(B)?

P(A)13、设A,B为任意两个事件,A?

B,P(B)?

0,则下式成立的为.  P(A)?

P(A|B)  P(A)?

P(A|B)P(A)?

P(A|B)  P(A)?

P(A|B)

14、设A和B相互独立,P(A)?

,P(B)?

,则P(AB)?

   15、设P(A)?

c,P(B)?

b,P(A?

B)?

a,则P(AB)为(  ).  (A)a?

b  c?

b  (C)a(1?

b)  b?

a16、设A,B互不相容,且P(A)?

0,P(B)?

0,则必有.

(A)P(BA)?

0P(AB)?

P(A)(C)P(AB)?

P(A)P(B)  P(AB)?

017、设A,B相互独立,且P(A?

B)?

P(B)?

,则P(A)?

(A)   (C)  18、已知P(A)?

,P(B)?

,P(A?

B)?

,则P(AB)?

  (A)   (C)  19、已知A?

B,P(A)?

P(B)?

,则P(BA)?

().

(A)   (C)  20、已知P(A)?

P(B)?

P(B|A)?

则P(A?

B)?

(  ).

2

(A)  (C)  

21、掷一枚钱币,反复掷4次,则恰有1次反面出现的概率是(  ).  (A)1/2  1/4  (C)1/6  1/8

22、一学生毫无准备地参加一项测验,其中有5道是非题,他随机地选择”是”和”非”作答,则该生至少答对一题的概率为().  (A)

15311  (C)

532323223、掷一枚质地均匀的骰子,设A为“出现奇数点”,B为“出现1点”,则P(B|A)=(  ).(A)1/6  1/4  (C)1/3  1/2

24、一袋中有6个黑球,4个白球.有放回地从中随机抽取3个球,则3个球同色的概率是(  ).

(A)  (C)

25、随机扔二颗骰子,已知点数之和为8,则二颗骰子的点数都是奇数的概率为.

1112   521233111   5212326、随机扔二颗骰子,已知点数之和为8,则二颗骰子的点数都是偶数的概率为。

27、掷一枚质地均匀的骰子,设A为“出现偶数点”,B为“出现两点”,则

P(BA)=(  ).

(A)1/6  1/4  (C)1/3  1/2

28、设甲乙两人独立射击同一目标,他们击中目标的概率分别为和,则目标被击中的概率是.

(A)   (C)

29、袋中有6个乒乓球,其中2个黄的,4个白的,现从中任取2球(不放回抽样),则取得2只白球的概率是.

(A)1/5  2/5  (C)3/5  4/5

30、10箱产品中有8箱次品率为,2箱次品率为,从这批产品中任取一件为次品的概率是.

(A)   (C)  

31、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球,则第二人在第一次就取到黄球的概率是

1/5  2/5  3/5  4/5

32、一部六卷选集,按任意顺序放到书架上,则第三卷和第四卷分别在两端的概率是(  ).

3

(A)1/10  1/12  (C)1/15  1/18

33、甲袋中有4只红球,6只白球;乙袋中有6只红球,10只白球.现从两袋中各取1球,则2球颜色相同的概率是().(A)

6151921  (B)  (C)  (D)4040404034、设在10个同一型号的元件中有7个一等品,从这些元件中不放回地连续取2次,每次取1个元件.若第1次取得一等品时,第2次取得一等品的概率是().(A)

7667  (B)  (C)  (D)101099,n的n张赠券中采用不放回方式抽签,则在第k次(1?

k?

n)抽到1号

35、在编号为1,2,赠券的概率是().

1111  (B)  (C)  (D)n?

kn?

k?

1nn?

k?

136、某人花钱买了A、B、C三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖

(A)

的概率分别为P(A)?

P(B)?

P(C)?

如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为()

(A)   (C)

37、设N件产品中有n件是合格品,从这N件产品中任取2件,问其中有一件为不合格品,另一件为合格品的概率是。

(A)

n(N?

n)n?

1  

2N?

n?

1N(N?

1)n?

1n(N?

n)   N22(N?

n)(C)

二、填空题

1、设A,B是两个事件,则A,B中必有一个发生应表示为  .

2、设A,B为两相互独立的事件,P(A?

B)?

P(A)?

,则P(B)?

_______.

3、已知P(A)?

111,P(B|A)?

P(A|B)?

,则P(A?

B)?

_______.4324、已知P(A1)?

P(A2)?

P(A3)?

,且A1,A2,A3相互独立,则P(A1?

A2?

A3)?

____.

5、随机事件A,B相互独立,且P(A)?

P?

B?

?

,则A、B都不发生的概率为_______.

4

2,则P(A?

B)?

  .317、设两个相互独立的事件A,B都不发生的概率为,A发生B不发生的概率与B发生A96、已知P(A)?

P(B)?

及P(AB)?

不发生的概率相等,则P?

A?

8、已知P(A)?

P(B)?

及P(BA)?

则P(A?

B)?

_________.

9、已知P(A)?

P(A?

B)?

则P(AB)?

________________.10、设A,B互不相容,且P(A)?

p,P(B)?

q;则P(AB)?

_______.

11、设事件A,B及A?

B的概率分别为,,,则P(AB)?

______.12、已知事件A,B互不相容,且P?

A?

?

PAB?

,则P?

B?

=.13、设事件A,B相互独立,P?

A?

?

P?

B?

?

,则PA?

B?

________.

14、已知A,B两个事件满足P(AB)?

P(AB),且P(A)?

p,则P(B)?

_______.

15、袋中有红、黄、白球各一个,每次任取一个,有放回的抽三次,则颜色全不同的概率为

__________.

16、一道单项选择题同时列出5个答案,一个考生可能真正理解而选对答案,也可能乱猜

一个。

假设他知道正确答案的概率为

11,乱猜对答案的概率为。

如果已知他选对了,35则他确实知道正确答案的概率为  .

17、设在一次试验中,A发生的概率为p,现进行5次独立试验,则A至少发生一次的概

率为  .

18、同时抛掷四颗均匀的骰子,则四颗骰子点数全不相同的概率为  .

19、有两只口袋,甲带中装有3只白球,2只黑球,乙袋中装有2只白球,5只黑球,任选

一袋,并从中任取1只球,此球为黑球的概率为______.

20、三台机器相互独立运转,设第一、二、三台机器不发生故障的概率依次为,,,

则这三台机器中至少有一台发生故障的概率_______.

21、某人射击的命中率为,独立射击10次,则至少击中1次的概率为_______.

5

22、甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为________________.23、甲,乙,丙三人独立射击,中靶的概率分别为

是甲脱靶的概率为_________.

24、一批电子元件共有100个,次品率为连续两次不放回地从中任取一个,则第二

次才取到正品的概率为  .

25、某人射击的命中率为,独立射击10次,则至多击中2次的概率为  。

26、袋中有红、黄、白球各一个,每次任取一个,有放回地取两次,则两次取到的球颜色不相同的概率为  。

27、袋中有红、黄、白球各一个,每次任取一个,有放回地取三次,则三次取到的球全为红球的概率为  .

28、一袋中共有6个黑球和3个白球.今从中依次无放回地抽取两次,则第2次抽取出的是白球的概率为  .

29、将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它是奇数的概率为______.30、一盒产品中有a只正品,b只次品,不放回地任取两次,第二次取到正品的概率为_______.

31、一盒产品中有a只正品,b只次品,有放回地任取两次,第二次取到正品的概率为_______.

32、一批产品共有10件正品和2件次品,任意抽取两次,每次抽一件,抽出后不放回,则第二次抽出的是次品的概率为_______.

33、袋中有10个球,其中6个是红球,现不放回地从中任取3球,则所取的球中有2个是红球的概率为_________.

34、设袋中装有3只白球、5只红球,在袋中取球两次,每次取1只,作不放回抽样,则取到2只都是红球的概率为____________。

三、解答题

1、设两两相互独立的三事件A,B,C满足条件:

ABC?

?

P(A)?

P(B)?

P(C),且已知

123,和,他们同时开枪并有两发中靶,则234P(A?

B?

C)?

9,求P(A).161,试求P(A)42、设事件A与B相互独立,两事件中只有A发生及只有B发生的概率都是

6

及P(B).

3、一口袋中有4个红球及6个白球。

每次从这袋中任取一球,取后放回,设每次取球时各个球被取到的概率相同。

求:

前两次均取得红球的概率;第n次才取得红球的概率;4、甲,乙两人投篮,投中的概率分别为和,今各投3次.求二人投中的次数相等的概率.

5、假设每个人在一周七天中每天等可能出生,现对一个三人学习小组考虑生日问题:

(1)求三个人中恰有二人的生日在星期天的概率;

(2)求三个人中至多有一人的生日在星期天的概率;(3)求三个人的生日不都在星期天的概率.

6、一袋内有10个大小相同的球,其中6个白球,4个黑球.现从中任取2球,求

(1)取出的2球恰好是1黑1白球的概率;

(2)取出的2球中至少有1个黑球的概率.

7、一袋内有10个大小相同的球,其中6个白球,4个黑球.现从中任取2球,求

(1)取出的2球恰好是1黑1白球的概率;

(2)取出的2球中至少有1个白球的概率.

8、设袋中装有5只白球、3只红球,在袋中取球两次,每次取1只,试就下列两种情况求2只都是红球的概率。

(1)作不放回抽取;作有放回抽取。

9、袋中有12个乒乓球,其中9只是没有用过的新球,第一次比赛时任取3只使用,用毕放回.第二次比赛时也任取3只球,求此3只球都没有用过的概率.

10、甲、乙、丙3位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为

,

求恰有两位同学不及格的概率;

如果已经知道这3位同学中有2位不及格,求其中一位是同学乙的概率.

11、已知一批产品中96%是合格品,检查产品时,一合格品被误认为是次品的概率是;一次品被误认为是合格品的概率是求在被检查后认为是合格品的产品确实是合格品的概率.

12、设在一群男、女人数相等的人群中,已知6%的男人和%的女人患有色盲。

今从该人群中随机选择一人,试问:

此人患有色盲的概率是多少?

如果此人患有色盲,那么他是男性的概率是多少?

7

13、某车间生产了同样规格的6箱产品,其中有3箱,2箱和1箱分别是甲、乙、丙3个车床生产的,且3个车床的次品率依次为一箱中任取一件,试计算:

(1)取得的一件是次品的概率;

(2)若已知取得的一件是次品,试求所取得的产品是丙车床生产的概率.

14、某车间生产了同样规格的10箱产品,其中有5箱、3箱和2箱分别是甲、乙、丙3个车床生产的,且3个车床的次品率依次为

111,,,现从这6箱中任选一箱,再从选出的101520111,和,现从这10箱中任选一箱,再从101520选出的一箱中任取一件,若已知取得的此件产品是次品,是求该次品是乙床生产的概率。

15、某仓库有同样规格的产品12箱,其中甲厂生产6箱产品,乙厂生产4箱产品,丙厂生产2箱产品.三个厂次品率依次为

111,,,现从12箱中任取一箱,再从取得的一箱中任意取101418出一件产品,求取得的一件产品是正品的概率?

16、仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂、乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率.

17、某厂有甲、乙、丙三个车间生产同一种产品,产量分别占总产量的20%,30%,50%,次品率依次为,,,现将三个车间生产的产品混合在一起,求随机取一个产品为次品的概率为多少?

18、设有来自三个地区的各10名,15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份.现随机地取一个地区的报名表,从中任意抽取一份.

(1)求抽到的一份是女生表的概率;

(2)已知抽到的一份是女生表,求该女生表来自第一个地区的概率.

19、有朋友自远方来,他坐火车、坐船、坐汽车、坐飞机来的概率分别是,,,若坐火车来迟到的概率是

111;坐船来迟到的概率是;坐汽车来迟到的概率是;坐飞机4312来,则不会迟到.实际上他迟到了,推测他坐火车来的可能性的大小?

四、综合题1、已知P(A)?

111,P(BA)?

P(AB)?

求P(A?

B)4328

2、假设P(A)?

0,试证P(B|A)?

1?

P(B).P(A)3、已知事件A,B,C相互独立,证明:

A?

B与C相互独立.

4、设A,B是任意二事件,其中0?

P(B)?

1,

证明:

P(A|B)?

P(A|B)是A与B独立的充分必要条件.

5、证明:

P(AB?

AB)?

P(A)?

P(B)?

2P(AB).

6、设事件A与B相互独立,试证:

A和B相互独立;A与B相互独立。

7、设事件A,B相互独立且P(A)?

P(B)?

求P(A?

B).8、设事件A,B相互独立且P(A)?

P(B)?

求P(A?

B).

9、设有n个人,每个人都等可能地被分到N个房间中的任意一间去住,试求下列事件的概率:

A=“指定的n个房间各有一个人住”;B=“恰好有n个房间各住一个人”.10、假设某山城今天下雨的概率是准确的概率是

123,不下雨的概率是;天气预报准确的概率是,不3341;王先生每天都听天气预报,若天气预报有雨,王先生带伞的概率是1,若41天气预报没有雨,王先生带伞的概率是;

(1)求某天天气预报下雨的概率?

(2)王先生某

2天带伞外出的概率?

(3)某天邻居看到王先生带伞外出,求预报天气下雨的概率?

第二章随机变量及其分布

一、选择题

1、设每次试验成功的概率为p(0?

p?

1),重复进行试验直到第n次才取得r(1?

r?

n)次成功的概率为().Cn?

1p(1?

p)Cn?

1pr?

1r?

1r?

1rn?

r  Cnp(1?

p)rrn?

r

(1?

p)n?

r?

1  pr(1?

p)n?

r

9

2、设离散随机变量X的分布函数为F(x),且xk?

1?

xk?

xk?

1,则P(X?

xk)?

().  P(xk?

1?

X?

xk)  F(xk?

1)?

F(xk?

1)  P(xk?

1?

X?

xk?

1)  F(xk)?

F(xk?

1)3、常数b?

()时,pi?

b(i?

1,2,)为离散型随机变量的概率分布律.

i(i?

1)1  (D)32(A)2  (B)  1  (C)

4、离散型随机变量X的概率分布为P(X?

k)?

A?

k(k?

1,2,?

)的充要条件是().?

?

(1?

A)?

1且A?

0  A?

1?

?

且01A1?

1且?

?

1  A?

0且01

5、设随机变量X在区间(2,5)上服从均匀分布.现对X进行三次独立观测,则至少有两次观测值大于3的概率为().(A)

202722  (B)  (C)  (D)  2730536、若函数f(x)cosx,x?

D是随机变量X的概率密度,则区间D为其它?

0,[0,]  [?

2?

3?

7?

?

]  [0,?

]  [,]2247、下列函数为随机变量的密度函数的为(  )

?

1?

cosx,x?

[0,?

]?

(A)f(x)?

?

  (B)f(x)?

?

2其他?

0,?

?

0,2x?

2其他

(x?

?

)?

1?

2?

2?

?

e?

x,x?

0e,x?

0(C)f(x)2?

(D)f(x)?

?

x?

0?

0,?

x?

0?

0,8、下列函数中,可以作为随机变量分布函数的是  F(x)?

131F(x)?

?

arctanx 

1?

x242?

  (D)F(x)?

x?

0?

0,?

F(x)?

?

x,x?

0?

?

1?

x

2?

arctanx?

1

10

D(2X?

Y)?

()。

11、已知随机变量X和Y相互独立,且它们分别在区间?

?

1,3?

和?

2,5?

上服从均匀分布,则E(XY)?

 B.6   D.12

12、设随机变量X,Y相互独立,且X~b(10,),Y~b(10,)(都是二项分布),则

E[(X?

2Y)2]?

()。

13、将一枚硬币重复掷n次,以X和Y分别表示正面向上和向下的次数,则X和Y的相

关系数?

等于

(A)?

1.  (B)0.  (C)1/2.  (D)1.14、已知离散型随机变量X服从参数为2的泊松分布,即

k?

2P(X?

k)?

2ek!

(k?

0,1,2,?

),

则随机变量Y?

3X?

2的数学期望为().

(A)2  (B)4  (C)  6  (D)8

15、设X1,X2,X3都服从[0,2]上的均匀分布,则E(3X1?

X2?

2X3)?

().  (A)1  (B)3  (C)4  (D)2

16、设X,Y都服从区间[0,2]上的均匀分布,则X?

Y的期望为(  ).  (A)1  (B)2  (C)  (D)无法计算

17、设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X?

2Y的方差为().

A.8  B.16  C.28  D.44

18、已知离散型随机变量X~B(n,p),且EX?

8,DX?

,则n?

    

219、设X服从参数?

?

3的泊松分布,则E(X)?

.

A.1  B.9  C.10  D.12

26

20、设随机变量(X,Y)的方差D(X)?

4,D(Y)?

1,相关系数

?

XY?

则方差

D(3X?

2Y)?

(  ).

40  34

21、已知随机变量X服从二项分布,且有E(X)?

D(X)?

,则二项分布的参数

n,p的值为().

(A)  n?

4,p?

  (B)  n?

6,p?

  (C)  n?

8,p?

  (D)  n?

24,p?

22、二维随机变量(X,Y)服从二维正态分布,则X?

Y与X?

Y不相关的充要条件为

EX?

EY  (B)EX2?

[EX]2?

EY2?

[EY]2(C)EX2?

EY2  (D)EX2?

[EX]2?

EY2?

[EY]2

且E(Xi)?

a,,5)独立同分布,D(Xi)?

b,(i?

1,23、设5个灯泡的寿命Xi(i?

1,则5个灯泡的平均寿命Y?

5),

X1?

X2?

X3?

X4?

X5的方差D(Y)?

51(X1?

X2?

X3),则35b  b   24、设X1,X2,X3相互独立同服从参数?

?

3的泊松分布,令Y?

E(Y2)?

1  9  10  6二、填空题

4?

上服从均匀分布,Y服1、设X与Y是两个相互独立的随机变量,且X在?

0,从参数为的指数分布,则数学期望E(XY)=_____________.

2、设随机变量X服从参数为5的泊松分布,Y?

3X?

2,则E(Y)?

______.3、设随机变量X服从均匀分布U(-3,4),则数学期望E(2X?

1)=___________.

4、设X~b(20,),则方差D(1?

2X)=  

5、设X~N(10,),Y~N(1,4),且X与Y相互独立,则D(2X?

Y)?

  .

27

6、设随机变量X,Y相互独立,其中X服从0-1分布,Y服从泊松分布且

E(Y)?

则D(X?

Y)?

  .

7、若随机变量X,Y是相互独立,且D(X)?

,D(Y)?

1,则D(3X?

Y)?

  .

8、已知E(X)?

1,E(Y)?

2,D(X)?

1,D(Y)?

4,则其数学期望E(Z)?

  .

?

XY?

,设Z?

(2X?

Y?

1)2,

9、设随机变量X1,X2,X3相互独立,其中X1服从[0,6]上的均匀分布,X2服从正态分布

N(0,22),X3服从参数为?

?

3的泊松分布,令Y?

X1?

2X2?

3X3,则E(X)?

____.

10、如果随机变量X的期望E(X)?

2,E(X2)?

9,那么D(1?

3X)?

  .11、X,Y服从相同分布N?

?

2,则E?

?

aX?

bY?

?

aX?

bY  .2、设随机变量X~b(3,),则Y?

2X?

1的数学期望为  

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 互联网

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1