系统压力损失及流量平稳.docx

上传人:b****8 文档编号:10082182 上传时间:2023-02-08 格式:DOCX 页数:16 大小:289.62KB
下载 相关 举报
系统压力损失及流量平稳.docx_第1页
第1页 / 共16页
系统压力损失及流量平稳.docx_第2页
第2页 / 共16页
系统压力损失及流量平稳.docx_第3页
第3页 / 共16页
系统压力损失及流量平稳.docx_第4页
第4页 / 共16页
系统压力损失及流量平稳.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

系统压力损失及流量平稳.docx

《系统压力损失及流量平稳.docx》由会员分享,可在线阅读,更多相关《系统压力损失及流量平稳.docx(16页珍藏版)》请在冰豆网上搜索。

系统压力损失及流量平稳.docx

系统压力损失及流量平稳

管道系统的压力损失和流量平稳

意大利卡莱菲公司北京办事处舒雪松

一、平稳流量

指系统的压头(扬程)改变后随之改变的新流量。

它能够通过以下公式计算:

G1=G×(H1/H)公式

(1)

其中:

G1=系统平稳后流量(新流量)

H1=系统新的压头

G=系统原流量

H=系统原压头

注:

G1,G,H1,H的单位应该一致。

比如G用m3/h为单位,那么G1也应该是m3/h。

以上公式依照流体动力学的理论衍变出来,它假设在水循环系统中,压力损失的总和与流量的指数为的关系,即Z=ΔPXG,Z确实是系统流量曲线的特点系数。

那个公式适合于咱们在上一个章节里讲到的高、中、低粗糙度管道。

新流量与原流量的关系通过倍率F表述:

F=G1/G公式

(2)

那个倍率用于确信系统通过平稳后每一个支路、结尾的新流量。

范例

(1)一个传统双管系统的平稳流量计算方式

如图1所示:

循环回路A有四个结尾,其特点为:

HA=980mm水柱(扬程)

GA=550l/h(流量)

G1=160l/h,G2=140l/h,G3=140l/h,G4=110l/h

循环回路B有3个结尾,其特点为:

HB=700mm水柱(扬程)

GB=360l/h(流量)

G5=140l/h,G6=120l/h,G7=100l/h

此刻,若是A、B回路汇合到一路,其流量及压损特点都会产生转变。

以下咱们将用3种方式进行计算。

在AB汇合后,其汇合点的压差一致。

那个压差值能够选择其中一个回路的压差值或从头设定一个压差值。

A,按压差值大的回路A为标准计算:

即Hn=HA=980mm水柱,因此只需要平稳回路B的流量。

通过公式

(1)计算B回路的新流量,得出:

GBn=GB×(Hn/HB)=360×(980/700)=429.5l/h

通过公式

(2)取得倍率F=360=

因此,B回路每一个结尾新的流量就变成:

G5=140×F=167l/h,G6=120×F=143l/h,G7=100×F=119l/h

B,按压差值小的回路B为标准计算:

即Hn=HB=700mm

水柱,因此只需要平稳回路A的流量,通过公式

(1)计算A回路新流量,得出:

GAn=GA×(Hn/HA)=550×(700/980)=460.9l/h

通过公式

(2)取得倍率F=550=

因此能够计算出A回路每一个结尾的新流量:

G1=160×F=134l/h,G2=140×F=117l/h,G3=140×F=117l/h,G4=110×F=92l/h

C,按平均压差值为标准计算:

即Hn=(HB+HA)/2=840mm水柱,因此A,B回路流量却需要进行平稳,通过公式

(1)计算A,B回路新流量,得出:

Gan=GA×(Hn/HA)=550×(840/980)=507.2l/h

GBn=GB×(Hn/HB)=360×(840/700)=396.2l/h

通过公式

(2)取得倍率:

FA=550=,FB=360=,因此能够计算出A和B回路每一个结尾的新流量:

G1=160×FA=147l/h,G2=140×FA=129l/h,G3=140×FA=129l/h,G4=110×FA=101l/h,G5=140×FB=154l/h,G6=120×FB=132l/h,G7=100×FB=110l/h

结论:

按大的压差计算方式保证了最远端的热效率,但在压差更小的回路内结尾流量大于设计流量,因此在那个环路内可能造成太高的流速。

按小的压差计算方式可不能造成太高的流速,可是却让压差值更大的回路其流量低于设计流量。

按平均的压差计算方式是前二者的折衷。

在流量及流速上却更为接近设计值。

二、系统流量的计算及管径的选择实例

见图2,这是一个典型的双管系统,由8个结尾组成,其系统设计标准如下:

每一个结尾额定流量:

330l/h

每一个结尾压力损失:

150mm

每一个结尾的支管长度(供回水):

4m

每一个支路之间的立管长度(供回水):

6m

立管与支管连接弯头:

2个90

---计算结尾到立管部份的局部压力损失系数ξ,见图3:

2个T型汇合口:

2X=

2个90弯头:

2X=(3/8”,1/2”);2X=(3/4”,1”)

1个供水角阀(平均值):

1个回水角阀(平均值):

共计Σξ=(3/8”,1/2”);Σξ=(3/4”,1”)

---计算支路之间的立管部份的局部压力损失系数ξ,见图4:

2个T型汇合口:

2X=

1个管径扩大接头:

1个管径缩小接头:

共计Σξ=(管径不变时);Σξ=(管径改变时)

 

 

 

 

---计算结尾8的流量、压力损失及管径选择:

流量G=设计流量=330l/h

支管管径:

1/2”:

流速0.44m/s,不超过最高流速0.7m/s

压力损失:

●连接结尾的支管压力损失:

长度4m,延程压力损失r=20.5mm/m(1/2”管在330l/h的流量时),因此压力损失=4X=82mm.

●局部压力损失:

按Σξ=,流速=0.44m/s,依照公式

z=ξXρXv²/2X,得出z=²/=96mm

●结尾压力损失:

150mm

●压力损失总和H8:

82+96+150=328mm

---计算结尾7、8之间的立管流量、压力损失及管径选择:

流量G8-7=G8=330l/h

立管管径:

3/4”:

按最接近r=10mm/m的可选商用管道计算

压力损失:

●延程压力损失:

长度6m,延程压力损失r=5mm/m(13/4”管在330l/h的流量时),因此压力损失=6X5=30mm.

●局部压力损失:

按Σξ=,流速=0.25m/s,依照公式

z=ξXρXv²/2X,得出z=²/=6mm

●压力损失总和ΔP8-7:

30+6=36mm

 

---计算结尾7的流量、压力损失及管径选择:

就如前面的‘平稳流量’章节讲到的一样,结尾8和结尾7在7层的立管分支处汇合,其可用扬程H7=H8+ΔP8-7=328+36=364mm

依照流量平稳公式1,流量G7=G8×(H7/H8)=330X(364/328)=349l/h

流速v7=0.47m/s

依照不超过最高流速0.7m/s的原那么,结尾7的支管管径选择为1/2”.

---计算结尾6、7之间的立管流量、压力损失及管径选择:

流量G7-6=G8-7+G7=330+349=679l/h

立管管径:

3/4”:

按接近r=10mm/m的可选商用管道计算

压力损失:

●延程压力损失:

长度6m,延程压力损失r=18.5mm/m(13/4”管在679l/h的流量时),因此压力损失=6X=111mm.

●局部压力损失:

按Σξ=,流速=0.51m/s,依照公式

z=ξXρXv²/2X,得出z=²/=26mm

●压力损失总和ΔP7-6=111+26=137mm

---计算结尾6的流量、压力损失及管径选择:

可用扬程H6=H7+ΔP7-6=364+137=501mm

依照流量平稳公式1,流量G6=G8×(H6/H8)=330X(501/328)=412l/h

流速v7=0.55m/s

依照不超过最高流速0.7m/s的原那么,结尾6的支管管径选择为1/2”.

依照以上计算方式,其余结尾及立管特点数据计算如下,见表1及图5:

表1:

区域

流量

压头

流速

管径

超出额定流量

末端8支路

330l/h

328mm

0.44m/s

1/2”

+0%

末端7、8之间

330l/h

36mm

0.25m/s

3/4”

末端7支路

349l/h

364mm

0.47m/s

1/2”

+%

末端6、7之间

679l/h

137mm

0.51m/s

3/4”

末端6支路

412l/h

501mm

0.55m/s

1/2”

+%

末端5、6之间

1091l/h

131mm

0.52m/s

1”

末端5支路

466l/h

632mm

0.63m/s

1/2”

+%

末端4、5之间

1557l/h

74mm

0.43m/s

11/4”

末端4支路

494l/h

706mm

0.66m/s

1/2”

+%

末端3、4之间

2051l/h

100mm

0.56m/s

11/4”

末端3支路

529l/h

806mm

0.70m/s

1/2”

+%

末端2、3之间

2580l/h

98mm

0.52m/s

11/2”

末端2支路

562l/h

904mm

0.42m/s

3/4”

+%

末端1、2之间

3142l/h

113mm

0.64m/s

11/2”

末端1支路

598l/h

1017mm

0.45m/s

3/4”

+%

1层到地下

3740l/h

78mm

0.47m/s

2”

系统总特征

3740l/h

1095mm

从以上数据看出,在需要知足最结尾额定流量的情形下,其余结尾的流量都会超出额定流量,离热源越近的结尾,因为其压头更高,流量超出范围越大。

因此,咱们需要

对每一个结尾支路的流量进行平稳,平稳的方式大致分为三种:

同程式流量平稳,手动平稳阀平稳,动态流量平稳阀平稳。

同程式的平稳由于其管道计算及铺设较为复杂,在实际的工程中利用较少。

咱们在本章节内只对利用手动和自动平稳阀平稳流量的方式进行实例的计算演示。

---手动平稳阀平稳方式:

在每一个结尾前安装手动平稳阀,通过平稳阀的调剂使每一个结尾的流量符合设计流量。

因此系统全负荷时总流量就改变成:

8X330=2640l/h。

系统的压差计算为:

1,最结尾8的平稳阀全开,在全开状态时,假定平稳阀的压力损失为150mm,通过上面的计算方式进行一样计算,得出系统数据特点如下,见表2及图6

表2:

区域

流量

压头

流速

管径

平衡阀增加压阻

末端8支路

330l/h

478mm

0.44m/s

1/2”

+150mm

末端7、8之间

330l/h

36mm

0.25m/s

3/4”

末端7支路

330l/h

514mm

0.44m/s

1/2”

+186mm

末端6、7之间

660l/h

133mm

0.50m/s

3/4”

末端6支路

330l/h

647mm

0.44m/s

1/2”

+319mm

末端5、6之间

990l/h

110mm

0.47m/s

1”

末端5支路

330l/h

757mm

0.44m/s

1/2”

+429mm

末端4、5之间

1320l/h

52mm

0.36m/s

11/4”

末端4支路

330l/h

809mm

0.44m/s

1/2”

+481mm

末端3、4之间

1650l/h

65mm

0.45m/s

11/4”

末端3支路

330l/h

874mm

0.44m/s

1/2”

+546mm

末端2、3之间

1980l/h

95mm

0.54m/s

11/4”

末端2支路

330l/h

969mm

0.44m/s

1/2”

+641mm

末端1、2之间

2310l/h

126mm

0.63m/s

11/4”

末端1支路

330l/h

1095mm

0.44m/s

1/2”

+767mm

1层到地下

2640l/h

117mm

0.53m/s

11/2”

系统总特征

2640l/h

1212mm

若是通过流量曲线图表表示未平稳流量系统和安装了手动流量平稳阀的系统,从图7对照能够得出,利用了流量平稳阀的系统曲线更陡,稳固性高于未平稳的系统。

以上所谈到的都是系统全负荷运行状态,也确实是说,所有的结尾都开启。

但在实际运行中,尤其是在通过电动两通阀自动操纵结尾的系统中,某些结尾会因为其所控区域温度达到设定值而自动关闭。

这时,系统的流量曲线又会发生专门大的转变。

比如说,当结尾3,5,7,8关闭时,系统的流量曲线会向上移动,可是剩余的结尾1,2,4,6的流量总和并不是理论上的2640/2=1320l/h,而是改变成1630l/h,压头改变成1377mm.(那个地址由于篇幅的关系,有关此流量,压头,曲线指数的计算将不做详细介绍,具体的计算步骤能够参考卡莱菲公司的技术手册。

从图7能够看出,当系统半负荷运行时,实际的流量与压头与理论值有偏离,偏离的结果是剩余的4个结尾流量会增大。

图8那么详细计算出了半负荷时各个结尾的实际流量及过流比率。

--动态流量平稳阀平稳方式:

在每一个结尾前安装动态流量平稳阀,因为每一个平稳阀设定的流量都是330l/h,因此系统全负荷时流量总和为:

8X330=2640l/h。

动态流量平稳阀的特点在于其能够在专门大一段的压差范围内维持稳固的流量,也确实是说,它能自动在系统转变时增加或减少压力损失以达到平稳的目的。

在设计和计算上工作也比手动平稳阀的方式更为简单。

安装了动态流量平稳阀系统的压力损失总和为:

最结尾8的压力损失150mm+动态流量平稳阀最小工作压差1250mm+由结尾8至地下室的管道延程及局部损失1089mm=2489mm(具体计算详见技术手册)。

表3:

区域

流量

压头

流速

管径

平衡阀增加压阻

末端8支路

330l/h

1755mm

0.44m/s

1/2”

+1427mm

末端7、8之间

330l/h

36mm

0.25m/s

3/4”

末端7支路

330l/h

1791mm

0.44m/s

1/2”

+1463mm

末端6、7之间

660l/h

133mm

0.50m/s

3/4”

末端6支路

330l/h

1924mm

0.44m/s

1/2”

+1608mm

末端5、6之间

990l/h

110mm

0.47m/s

1”

末端5支路

330l/h

2034mm

0.44m/s

1/2”

+1706mm

末端4、5之间

1320l/h

52mm

0.36m/s

11/4”

末端4支路

330l/h

2086mm

0.44m/s

1/2”

+1758mm

末端3、4之间

1650l/h

65mm

0.45m/s

11/4”

末端3支路

330l/h

2151mm

0.44m/s

1/2”

+1823mm

末端2、3之间

1980l/h

95mm

0.54m/s

11/4”

末端2支路

330l/h

2246mm

0.44m/s

1/2”

+1918mm

末端1、2之间

2310l/h

126mm

0.63m/s

11/4”

末端1支路

330l/h

2372mm

0.44m/s

1/2”

+2044mm

1层到地下

2640l/h

117mm

0.53m/s

11/2”

系统总特征

2640l/h

2489mm

当系统半负荷运行时,就如上面所讲到的,当结尾3,5,7,8关闭时,动态流量平稳阀芯自动吸收增加的压差,从而使流量曲线图与设计相符,见表4。

表4:

区域

流量

压头

流速

管径

平衡阀增加压阻

末端8支路

0l/h

1/2”

末端7、8之间

0l/h

3/4”

末端7支路

0l/h

1/2”

末端6、7之间

0l/h

3/4”

末端6支路

330l/h

2746mm

0.44m/s

1/2”

+2418mm

末端5、6之间

330l/h

13.6mm

0.14m/s

1”

末端5支路

0l/h

1/2”

末端4、5之间

330l/h

3.8mm

0.09m/s

11/4”

末端4支路

330l/h

2763mm

0.44m/s

1/2”

+2435mm

末端3、4之间

660l/h

11.4mm

0.17m/s

11/4”

末端3支路

0l/h

1/2”

末端2、3之间

660l/h

11.8mm

0.17m/s

11/4”

末端2支路

330l/h

2786mm

0.44m/s

1/2”

+2458mm

末端1、2之间

990l/h

25.2mm

0.28m/s

11/4”

末端1支路

330l/h

2811mm

0.44m/s

1/2”

+2483mm

1层到地下

1320l/h

31.4mm

0.25m/s

11/2”

系统总特征

1320l/h

2843mm

从图9能够看出,在利用动态流量平稳阀的系统中,当部份结尾关闭时,其余结尾的流量可不能改变,这是因为动态平稳阀其阀芯能够自身调剂压差,也确实是能自身调剂流量曲线特点指数Z,从而使流量始终维持不变。

有关动态流量平稳阀与变频泵及电动调剂阀的结合利用方式及系统特点等,在前几期的刊物中也别离由其它厂家作出了详细的讲解,咱们这儿就再也不予以重复。

在下一期的专题中,咱们将进一步探讨动态流量平稳阀和一次/二次系统各自的特点和优缺点。

 

参考文献:

CaleffiManual2:

DesignPrinciplesofHydronicHeatingSystems

ClaudioArdizzoia:

IlBilanciamentodinamicodeicircuitiidronici

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 设计艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1