工程力学Ⅰ运动学部分复习题及参考答案.docx
《工程力学Ⅰ运动学部分复习题及参考答案.docx》由会员分享,可在线阅读,更多相关《工程力学Ⅰ运动学部分复习题及参考答案.docx(20页珍藏版)》请在冰豆网上搜索。
工程力学Ⅰ运动学部分复习题及参考答案
运动学部分复习题
一、是非题(正确用V,错误用X,填入括号内。
)
1、对于平移刚体,任一瞬时,各点速度大小相等而方向可以不同。
(X)
2、在刚体运动过程中,若刚体内任一平面始终与某固定平面平行,则这种运动就是刚体的平面运动。
(X)
3、在自然坐标系中,如果速度v=常数,则加速度a=0o(X)
4、点的法向加速度与速度大小的改变率无关。
(V)
5、如果知道定轴转动刚体上某一点的法向加速度,就可确定刚体转动角速度的大小和转向。
(X)
6平移刚体上各点的运动轨迹一定是直线。
(X)
7、若动点相对动系的轨迹是直线,动系相对静系的运动是直线平动,则动点的绝对运动也一定是直线运动。
(X)
&在研究点的合成运动时,所选动点必须相对地球有运动(V)
9、若动系的牵连运动为定轴转动,则肯定存在哥氏加速度aCo(X)
10、速度瞬心的速度为零,加速度也为零。
(X)
11、基点法中平面图形绕基点转动的角速度与瞬心法中平面图形绕瞬心转动的角速度相同。
(V)
二、选择题(请将正确答案的序号填入括号内。
)
1、已知一动点作圆周运动,且其法向加速度越来越大,则该点运动的速度(A)
A)越来越大;B)越来越小;C)保持不变;D)无法确定。
2、点的加速度在副法线轴上的投影(B)。
A)可能为零;B)一定为零;C)保持不变;D)无法确定。
3、动点的运动方程以弧坐标表示为s=f(t),且沿坐标轴正向运动,但越来越慢,
则(D)。
ds小d2s门…、ds小d2s
(A)0,l:
0;(B)0,20;
dtdtdtdt
22
(C)加0,歸0;(D)dds0,^:
:
0。
4、一绳缠绕在轮上,绳端系一重物,其以速度v和加速度a向下运动,则绳上两
点AD和轮缘上两点BC的速度、加速度之间关系为
A)Va
aA
-aB,
B)Va
aA
C)
Va
aA
D)Va
二Vb,
aA
5、
在点的合成运动问题中,
A)
C)
定会有科氏加速度;
定没有科氏加速度。
ac
-aB,
Vc
-aB,
二VD,
-aD;
aB,
6、
直角刚杆AO=2m,BO=3m,已知某瞬时A点的速度vA=6m/s;
而B点的加
速度与B0成a=60°角。
则该瞬时刚杆的角速度3=(A)rad/s,角加速度a=(D)rad/s2。
A)3;B).3;
C)53;D)9.3。
7、一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量(A)
A)平行B)垂直C)夹角随时间变化D)夹角为恒定锐角
8在点的复合运动中,有(A、D)。
A)牵连运动是指动参考系相对于静参考系的运动;
B)牵连运动是指动系上在该瞬时与动点重合之点对静系的运动;
C)牵连速度和牵连加速度是指动系相对静系的运动速度和加速度;
D)牵连速度和牵连加速度是指动系上在该瞬时与动点相重合之点相对静系运动的
速度和加速度。
9.刚体做平面运动,平面图形上任意两点的速度有何关系。
__B
A)没有关系
B)任意两点间的速度在通过这两点的轴上的投影必须相等。
C)任意两点间的速度在直角坐标系Ox和Oy上的投影必须相等。
D)任意两点速度必须大小相等,方向相同,并沿此两点的连线。
10、平移刚体上各点的加速度和速度(A)
A)大小、方向均相同B)大小方向均不同
C)大小相同方向不同D)方向相同大小不同
三、填空题(请将答案填入划线内。
)
1、
求平面运动刚体上一点的速度有三种方法,即—基点_法与—速度投影—法、和_瞬
心法。
已知下列机构整体运动情况,确定A点的v,a:
大小丄;方向;aA:
大小
Z;2…'4方向。
(方向标在图上)
3、直角曲杆OAB以匀有速度o绕O轴转动,则在图示位置(AO垂直OO)时,摇杆QC的角速度为
2、
Va:
naa
VA
4、某一瞬时,平面图形上点A的速度VaM0,加速度aA=0,B点的加速度大小aB=40cm/s2,与AB连线的夹角©=60°,如图示,若AB=5cm则该瞬时,平面图形的角速度大小为co=
(2)rad/s,角加速度
(农3)rad/s2,转向为(逆)时针方向。
5、对图示机构,选取适当的动点和动系,分析三种运动,画出图示瞬时的速度图和加速度矢量图。
动点:
OA杆端点A点,
动系:
AB杆
图5-3-3
绝对运动:
绕O点的圆周运动
相对运动:
铅直直线运动,
牵连运动:
水平直线运动,速度矢量图:
B
6、动点:
B物快的角点D,
动系:
OA杆,
绝对运动:
水平直线运动,
相对运动:
沿0A杆直线运动
牵连运动:
绕0点的定轴转动速度矢量图:
,
加速度矢量图:
。
7、动点:
圆轮心C点,
动系:
0A杆,
绝对运动:
水平直线运动,
相对运动:
沿0A杆直线运动,
牵连运动:
绕0点的定轴转动,速度矢量图:
,
A
A
zz/
加速度矢量图:
。
8点沿图示轨迹运动,依条件标出各点全加速度的方向
1)动点在A点附近沿弧坐标正向运动,速度递增。
2)动点在B点附近沿弧坐标正向运动,速度递减。
3)
4)
5)
动点在C点(拐点)沿弧坐标正向运动,速度保持不变
动点在D点附近沿弧坐标正向匀速运动。
动点在正点速度递减为零,并开始反向运动。
A
S(+)
9、点M沿螺旋线自外向内运动,如图1所示。
它走过的弧长与时间的一次方成正比。
|\/|
财B
C
^0^J
级A
图2
试分析它的加速度越来越大(填大或小)
10、图2所示平板绕AB轴以匀角速度3定轴转动,动点M在板上沿圆槽顺时针运动,运动方程为s=v°t。
则M运动到F点时科氏加速度的大小'.3.V0
四、作图题
试确定下列机构中作平面运动刚体的瞬心位置。
B
o
3
ZOE
五.计算题
1、滚压机构如图所示,已知长为
(6)(轮A纯滚动)
r的曲柄OA以匀角速度•’转动,半径为R的滚子
沿水平面作无滑动的滚动。
求当曲柄与水平线的夹角为60,且曲柄与连杆AB垂直时,
滚子中心B的速度和滚子的角速度。
解曲柄OA作定轴转动,连杆AB和滚子均作平面运动,滚子中心B作直线运动。
由于vA垂直于OA,vB沿水平线OB,作A、B两点速度的垂线,其交点P,即为AB杆
在图示瞬时的速度瞬心。
因为点A的速度为:
Va二r,
所以连杆AB的角速度为:
:
'-AB
Var
AP3r
由Va的方向可知-.AB的转向为顺时针,故B点的速度:
2(3
vB二BP,aBr■
且由「AB的转向知Vb的方向水平向左。
由于滚子作无滑动的滚动滚子的角速度为:
所以滚子与水平面接触点C即为滚子的速度瞬心。
因此,
—R
23
且由vb的方向可知,-.b是逆时针转向
2、半径为R的圆盘沿直线轨道作纯滚动,如图所示,设图示瞬时轮心的速度为Vo,加速度为ao,方向如图所示。
试求该瞬时轮沿上C点的加速度。
1.解:
点A为轮子速度瞬心,由已知条件得轮子的角速度和角加速度分别为
vOd,a0
;
RdtR
选轮上的O点为基点,有
ac-aC二a°-aco-aCo上式向水平方向与竖直方向投影得
a。
=0a:
=2R
3.图示组合机构中,曲柄OA以匀角速度「转动,求图示瞬时摇杆BC的角速度和滑块D速度。
A
解图示机构中,OABC做定轴转动,CD故平面运动.选取滑块B为动点,OA为动系,
则B点的速度矢量如图所示,Vbvrve,式中ve二oA=
-i-.i,
3
故可求得
杆BC的角速度为
Vb
-'BC:
BCO1B
Vd
2阿.
VC-O1C'BC1
3
C点的速度大小为
由速度投影定理得滑块D的速度为Vd二%二三3,l
3
1
4、如图所示,曲柄0A长0.4m,以等角速度」=0.5rad.s-绕0轴逆时针转向转动
由于曲柄的A端推动水平板B,而使滑杆C沿铅直方向上升。
求当曲柄与水平线间的夹
角二=3°时,滑杆C的速度和加速度
解:
系统运动分析,动点:
A点;速度矢量图如图,由Va=Ve+Vr解得:
va=0A=0.2ms
彳
vc二ve=vacosv-0.173ms
BC的平移
加速度矢量图如图,因牵连运动为平移,故
aa=ae+a「
解得:
2_2
aa=OA=0.01ms
2
ac二乱=aasinv-0.05ms
ae
5、半径为R的半圆形凸轮D沿水平匀速v。
向右运动,带动从动杆AB沿铅直方向上升,如图所示。
试确定©=30o时,杆AB的速度和加速度。
A点牵连速度v;就是凸轮平移速度V。
;
A点相对速度vA沿接触点的切线方向由几何关系,可求得:
va=v°tg303vo
3
r
va
=:
=?
J3v°
cos303
加速度分析:
根据动点加速度表达式,有:
Vo
x
x
b
y
/.
aA
eeerc
-atA'aA'a:
A'aA'aA
其中,由于凸轮作匀速平移,atA,aeA,aeA,aA均为零;
将相对加速度分解到凸轮的切向和法向,分别用aA-a;.表示,A点在凸轮上沿圆周运
动,因此有:
r2Jva
4vp
3R
于是,可求得杆AB的绝对加速度为:
芒^=8,3v
cos309R
6、图示四连杆机构中,曲柄OA以匀角速度⑷转动,求图示瞬时杆OB的角速度和
角加速度。
已知OA=,OB=N,AB=3。
VA
解在图示瞬时,机构中OAOB杆做定轴转动,AB杆做瞬时平动。
(3分)
Vb=Va「’r,方向铅垂向上,(2分)
vco
故有■'1旦;「AB=0(3分)
OiB2
再取A点为基点,做出加速度矢量图如右上图所示(3分),nn
aBaB-aBA-a;A1
式
(1)中,aA=2raB^=0
将式
(1)往aB■方向投影得:
aB=0,故-:
打=亘0(5分)
qB
7、
平面机构如图所示,小环M同时套在大环和直杆AB上,已知大环固定不动,
直杆绕支座A等角速转动,角速度•=1rad/s,大环半径R=0.1m求巒=60时小环
相对杆AB的滑移速度和加速度。
解:
运动分析:
以杆AB为动系。
杆AB作定轴转动,为沿AB杆的滑动,绝对运动围绕大环的圆周运动。
小环为AB上的动点,其相对运动
参见图b,小环的速度为
Vm
当—60时,
e
Vm
=0.173m/s
1廳vM®=0.1m/s
3'
进行加速度分析,参见图(c)。
可得:
vM
小环的加速度为:
a”=aM'aMt'aM^'aM:
.
c
aM
其中,由于动基AB杆作匀角速定轴转动,
=60时
a:
=2皿=210.1=0.2m/s2方向如图,垂直AB
由于小环的绝对运动是沿大环作圆周运动,其法向加速度为
2r2
aM=V^=—一=0.4m/s2方向如图,指向Q
RR
将所有加速度投影到a:
,方向,可得
aM-aM..cos30aMcos60二a:
.,
1_11—
即=3aM=0.4-0.2-\30.173
222
得aM=0.52m/s2
8.在图示的机构中,曲柄OA以角速度•‘=5rad/s逆时针转动,连杆AB上有一套筒C与杆CD相连,并通过套筒C带动CD杆上下运动。
已知OA=20mmAB=60mm求图示瞬时,CD杆的速度和加速度。
n
运动分析,在此机构中OA杆作定轴转动,AB杆作平面运动,CD杆作平动,套筒C为复合运动。
连杆AB作平面运动,由于va〃Vb,故在该瞬时连杆AB作瞬时平动,故
Va=Vb=Vc
以CD杆上的C3点为动点,连杆AB为动系,连杆AB上的C2点为牵连点。
Ve=Vc2=100mm/s,方向水平向左,C3点的绝对速度也沿铅垂方向,相对速度V沿AB方向,由点的速度合成定理Va=VeVr作出C的速度平行四边形
由图中的几何关系知:
Vc3f=Vetg〉二《2OA
OB
『°A=100汉)20=35.4(mm/s)
.AB2-OA2、602-202
Vc3的方向铅垂向下
CD杆作平动,故其速度等于C3点的绝对速度。
加速度自己完成
9、附图所示机构中,已知AA'=BB=r=0.25mm且AB=AB';连杆AA以匀角速度3=2rad/s绕A'转动,当60°时,槽杆CE位置铅直。
求此时CE的角速度和角加速。
自己完成。
10、图示曲柄连杆机构带动摇杆OiC绕Oi轴摆动。
在连杆ab上装有两个滑块,滑块B在水平槽内滑动,而滑块D则在摇杆OiC的槽内滑动。
已知:
曲柄长OA=5cm,它绕O轴转动的角速度館=10rad/s;图示位置时,曲柄与水平线间成90°角,摇杆与水平线间成60°角;距离OiD=7cm。
求摇杆的角速度。