1、高中数学人教b版必修5学案12应用举例课堂探究学案含答案1.2 应用举例课堂探究实际问题中度量A,B两点的长度(高度)的方法剖析:(1)求距离问题如图,当AB的长度不可直接测量时,求AB的距离两点间不可到达又不可视两点间可视但不可达两点都不可达当A,B两点之间不可到达又不可视时,测出两边及其夹角,运用余弦定理求解,则AB当A,B两点之间可视但不可达时,测出两角及其夹边,先用内角和定理求第三角再运用正弦定理求解A(BC),根据正弦定理,得,则AB当A,B两点都不可达时,先在ADC和BDC中分别求出AC,BD,再在ABC或ABD中运用余弦定理求解先求:ADsinACD;再求:BDsinBCD;最后
2、:AB名师点拨:将所求距离或方向的问题转化为求一个三角形的边或角的问题时,我们选择的三角形往往条件不够,这时需要我们寻找其他的三角形作为解这个三角形的支持,为解这个三角形提供必要的条件(2)求高度问题如图,当AB的高度不可直接测量时,求AB的高度,有如下情况底部可达底部不可达当BC底部可达时,利用直角三角形的边角关系求解,则ABatan C当BD不可达时,在RtABD中,BD,在RtABC中,BC,aCDBCBDAB在BCD中,BCsin DABBC ,BACACB在ABC中,ABsinACBsinACBABsinACB名师点拨:在测量某物体高度的问题中,很多被测量的物体是一个立体的图形,而在测量过程中,我们测量的角度也不一定在同一平面内,因此还需要我们有一定的空间想象能力,关键是画出图形,把已知量和未知量归结到三角形中来求解题型一测量距离问题【例1】如图,隔河看两目标A,B,但不能到达,在岸边选取相距km的C,D两点,并测得ACB=75,BCD=45,ADC=30,ADB=45(A,B,C,D在同一平面内),求两目标A,B之间的距离