ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:78.76KB ,
资源ID:961739      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/961739.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(植物的光合作用本章重点和难点1光合电子传递与光合磷酸.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

植物的光合作用本章重点和难点1光合电子传递与光合磷酸.docx

1、植物的光合作用本章重点和难点1光合电子传递与光合磷酸第三章 植物的光合作用本章重点和难点:1.光合电子传递与光合磷酸化;2.C3、C4途径的异同点;3.光合产物运输机理; 难点: 光合磷酸化的机理。自养生物吸收二氧化碳转变成有机物的过程叫碳素同化作用(carbon assimilation)。 不能进行碳素同化作用的生物称之为异养生物,如动物、某些微生物和极少数高等植物。 碳素同化作用三种类型:细菌光合作用、绿色植物光合作用和化能合成作用。其中以绿色植物光合作用最为广泛,合成有机物最多,与人类的关系也最密切,因此,本章重点介绍绿色植物的光合作用。 光合作用(photosynthesis)是指绿

2、色植物吸收光能,同化二氧化碳和水,制造有机物质并释放氧气的过程。光合作用的最简式:CO2H2O(CH2O)O2S.Ruben和M.D.Kamen(1941,美国)通过18O2和C18O2同位素标记实验,证明光合作用中释放的O2来自于H2O。为了把CO2中的氧和H2O中的氧在形式上加以区别,用下式作为光合作用的总反应式: CO2 + 2H2O* (CH2O) + O*2 H2O 至此,人们已清楚地知道光合作用的反应物和生成物,由于植物体内含水量高,变化较大,一般不用含水量的变化来衡量植物的光合速率。而根据光合产物或者释放O2或吸收CO2的量计算光合速率。例如,用改良半叶法测定有机物质的积累,用红

3、外线CO2气体分析仪法测定CO2的变化,用氧电极测定O2的变化等。光合作用的意义:1将机物转变成有机物。地球上的自养植物一年同化的碳素约为21011吨,其中60是由陆生植物同化的,余下的40是由浮游植物同化的;2将光能转变成化学能。绿色植物每年同化碳所储藏的总能量约为全球能源消耗总量的10倍。人类所利用的能源,如煤炭、天然气、木材等都是现在或过去的植物通过光合作用形成的。光合作用是一个巨型能量转换站。3维持大气O2和CO2的相对平衡。绿色植物在吸收CO2的同时每年释放O2量约5.351011吨,使大气中O2能维持在21左右。因此,探讨光合作用的规律和机理,对于有效利用太阳能,更好地为人类服务,

4、具有重大的理论和实际意义。3.1 光合色素光合色素主要有三类:叶绿素、类胡萝卜素和藻胆素。高等植物叶绿体中含有前两类,藻胆素仅存在于藻类。3.1.1光合色素的结构与性质3.1.1.1 叶绿素(chlorophyll ,chl)不溶于水,溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。通常用80%的丙酮或丙酮:乙醇:水(4.5:4.5:1)的混合液来提取叶绿素。容易降解。 叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇酯化,另一个被叶醇酯化。叶绿素a与b很相似,不同之处仅在于叶绿素a第二个吡咯环上的一个甲基(-CH3)被醛基(-CHO)所取代,即为叶绿素b。叶绿素分子含有一个卟

5、啉环的“头部”和一个叶绿醇(植醇,phytol)的“尾巴”。卟啉环由四个吡咯环以四个甲烯基(-CH=)连接而成。镁原子居于卟啉环的中央,带正电性,与其相联的氮原子则偏向于带负电性,因而卟啉具有极性,是亲水的,可以与蛋白质结合。另外还有一个含羰基和羧基的同素环,羧基以酯键和甲醇结合。环上的丙酸基侧链以酯键与叶醇相结合。叶醇是由四个异戊二烯单位组成的双萜,是一个亲脂的脂肪链,它决定了叶绿素的脂溶性。卟啉环上的共轭双键和中央镁原子易被光激发而引起电子得失,从而使叶绿素具有特殊的光化学性质。叶绿素仅以电子传递(即电子得失引起的氧化还原)及共轭传递(直接能量传递)的方式参与能量的传递,而不进行氢的传递。

6、叶绿素去镁叶绿素铜代叶绿素(稳定而不易降解,常用醋酸铜处理来保存绿色植物标本)。3.1.1.2 类胡萝卜素(carotenoid)类胡萝卜素不溶于水而溶于有机溶剂。是一类由八个异戊二烯单位组成的40C不饱和烯烃(图3-1b)。比较稳定。类胡萝卜素有两种类型:胡萝卜素(carotene),呈橙黄色,主要有、三种异构体。有些真核藻类中还有异构体。-胡萝卜素在动物体内水解后可转化为维生素A(Vitamin A),能预防和治疗动物的夜盲症。叶黄素(lutein),呈黄色,是由胡萝卜素衍生的醇类。一般情况下,叶绿素/类胡萝卜素3:1,所以正常的叶片呈绿色。叶绿素易降解,秋天叶片呈黄色。全部的叶绿素和类胡

7、萝卜素都包埋在类囊体膜中,以非共价键与蛋白质结合组成色素蛋白复合体(pigment protein complex),以吸收和传递光能。3.1.1.3 藻胆素(phycobilin)存在于红藻和蓝藻中,常与蛋白质结合为藻胆蛋白,主要有藻红蛋白(phycoerythrin)、藻蓝蛋白(phycocyanin)和别藻蓝蛋白(allophycocyanin)三类。均溶于稀盐溶液中。藻胆素的四个吡咯环形成直链共轭体系,不含镁和叶醇链。功能:收集和传递光能。3.1.2光合色素的光学特性叶绿素在可见光区有两个最强吸收区:640660nm的红光区, 430450nm的蓝紫光区。叶绿素对橙光、黄光吸收较少,其

8、中尤以对绿光的吸收最少,所以叶绿素的溶液呈绿色。叶绿素a和叶绿素b的吸收光谱虽然相似,但不相同:叶绿素a在红光区的吸收带偏向长波方面,吸收带较宽,吸收峰较高;而在蓝紫光区的吸收带偏向短光波方面,吸收带较窄,吸收峰较低。叶绿素a对蓝紫光的吸收为对红光吸收的1.3倍,而叶绿素b则为3倍,说明叶绿素b吸收短波蓝紫光的能力比叶绿素a强。绝大多数的叶绿素a和全部的叶绿素b具有吸收光能的功能,只有极少数特殊状态的叶绿素a分子,才具有将光能转换为电能的作用(即具有光化学活性)。胡萝卜素和叶黄素的吸收光谱与叶绿素不同,它们的最大吸收带在400500nm的蓝紫光区(图3-2),不吸收红光等长波光。3.1.3光合

9、色素的荧光现象和磷光现象叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。叶绿素为什么会发荧光呢?当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态基态(ground state)上升到不稳定的高能状态激发态(excited state)。叶绿素荧光指被激发的叶绿素分子从第一单线态回到基态所发射的光。寿命很短(10-8s10-10s)。处于第一三线态的叶绿素返回到基态所发射的光称为叶绿素磷光。寿命较长(10-2s)。叶绿素吸收蓝光后处于第二单线态的叶绿素分子,其贮存的能量虽远大于吸收红光处于第一单线态的状态,但超过的部分对光合作用是无用的,在极短的时间内叶绿素分子

10、要从第二单线态返回第一单线态,多余的能量也是以热的形式耗散。因此,蓝光对光合作用而言,在能量利用率上不如红光高。荧光现象在叶片和叶绿体中很难观察到,是由于叶绿体吸收的光能主要用于光反应,很少以发光的形式散失。叶绿素的荧光和磷光说明叶绿素能被光所激发,这是将光能转变为化学能的第一步。3.1.4 叶绿素的生物合成及其与环境条件的关系3.1.4.1.叶绿素的生物合成叶绿素的合成是一个酶促反应。高等植物叶绿素的生物合成是以谷氨酸和-酮戊二酸作为原料,先合成-氨基酮戊酸(-aminolevulinic acid,ALA)。2分子ALA脱水缩合形成一分子具有吡咯环的胆色素原;4分子胆色素原脱氨基缩合形成一

11、分子尿卟啉原(合成过程按ABCD环的顺序进行),尿卟啉原的4个乙酸侧链脱羧形成具有四个甲基的粪卟啉原,以上反应是在厌氧条件下进行的。在有氧条件下,粪卟啉原经脱羧、脱氢、氧化形成原卟啉,原卟啉是形成叶绿素和亚铁血红素的分水岭。如果与铁结合,就生成亚铁血红素;若与镁结合,则形成Mg-原卟啉。由此可见,动植物的两大色素最初是同出一源的,以后在进化的过程中分道扬镳,结构和功能各异。Mg-原卟啉的一个羧基被甲基酯化,在原卟啉上形成第五个环,接着B环上的-CH2=CH2侧链还原为-CH2-CH3,即形成原叶绿酸酯。原叶绿酸酯经光还原变为叶绿酸酯a,然后与叶醇结合形成叶绿素a。叶绿素b是由叶绿素a转化而成的

12、。3.1.4.2.影响叶绿素形成的条件1光照:光是叶绿体发育和叶绿素合成必不可少的条件。从原叶绿酸酯转变为叶绿酸酯是需要光的还原过程,如果没有光照,则影响叶绿素形成,一般植物叶子会发黄,这种因缺乏某些条件而使叶子发黄的现象,称为黄化现象。然而,藻类、苔藓、蕨类、松柏科植物以及柑桔子叶和莲子的胚芽可在黑暗中可合成叶绿素,其合成机理尚不清楚。2.温度:叶绿素的生物合成是一系列酶促反应,因此受温度影响很大。最适温度是2030,最低温度约为24,最高温度为40左右。温度过高或过低均降低合成速率,加速叶绿素降解。秋天叶子变黄和早春寒潮过后秧苗变白等现象,都与低温抑制叶绿素形成有关。3.矿质元素:氮和镁是

13、叶绿素的组成成分,铁、铜、锰、锌是叶绿素合成过程中酶促反应的辅因子。缺乏这些元素影响叶绿素形成,植物出现缺绿症(chlorosis),尤以氮素的影响最大。4.水分:植物缺水会抑制叶绿素的生物合成,且与蛋白质合成受阻有关。严重缺水时,叶绿素的合成减慢,降解加速,所以干旱时叶片呈黄褐色。5.氧气:缺氧会影响叶绿素的合成;光能过剩时,氧引起叶绿素的光氧化。此外,叶绿素的形成还受遗传因素的控制。如白化叶、花班叶等都是叶绿素不能正常合成之故。3.2 光合作用的机理20世纪初O.Warburg等在研究外界条件对光合作用的影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,光合速率便不再随光

14、强的增加而提高,此时只有提高温度或CO2浓度才能增加光合速率。由此推断,光合作用至少有两个步骤,分别与光和温度有关。藻类(进行闪光试验,在光能量相同的情况下):连续不间断照光,光合效率较低;闪光照射(即光照中间间隔一暗期),光合效率高。表明光合作用不是任何步骤都需要光。根据需光与否,光合作用分为两个反应光反应(light reaction)和暗反应(dark reaction)。光反应是必须在光下才能进行的光化学反应;在类囊体膜(光合膜)上进行;暗反应是在暗处(也可以在光下)进行的酶促化学反应;在叶绿体基质中进行。近年来的研究表明,光反应的过程并不都需要光,而暗反应过程中的一些关键酶活性也受光的调节。整个光合作用可大致分为三个步骤:原初反应;电子传递和光合磷酸化;碳同化过程。第一、二两个步骤基本属于光反应,第三个步骤属于暗反应。3.2.1原初反应原初反应是指光合色素对光能的吸收、传递与转换过程。它是光合作用的第一步,特点:a: 速度快(10-12-10-9秒内完成);b:与温度无关, (可在液氮-196或液氦-271下进行)。光合色素分为二类:(1)反应中心色素(reaction centre pigments),少数特殊状态的、具有光化学活性的叶绿素a分子。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1