ImageVerifierCode 换一换
格式:DOCX , 页数:21 ,大小:24.50KB ,
资源ID:9339965      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9339965.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(线性代数同济大学第五版课后习题答案.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

线性代数同济大学第五版课后习题答案.docx

1、线性代数同济大学第五版课后习题答案线性代数同济大学第五版课后习题答案第五版线性代数同济版答案第一章行列式1用对角法则计算下列三阶行列式(1)2011年?4?1?183解决办法2011年?4?1?1832(4)3 0(1)(1)1 1 8 0 1 3 2(1)8 1(4)(1)24 8 16 4 4(2)abcbcacab解决办法abcbcacabacb bac cba bbb aaa ccc 3abc a3 b3 c3111abc222abc (3)111abc222abc解决方案bc2 ca2 ab2 ac2 ba2 cb2(a)b)c)c)a)xyx?yyx?yxx?yxy(4)解决办法x

2、(x y)y yx(x y)(x y)yx y3(x y)3 x3 3xy(x y)y3 x2 y x3 y3 x32(x3 y3)根据自然数从小到大的标准顺序,找出下列排列的逆序数xyx?yyx?yxx?yxy(1)1 2 3 4解的逆序数是0 (2)4 1 3 2反向订单号是4 41 43 42 32 (3)3 4 2 1逆解的数目是5 3 2 3 1 4 2 4 1,2 1 (4)2 4 1 3逆解的个数是3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n)n(n )?1)解的逆序数为23 2 (1)5 2 5 4(2)7 2 7 4 7 6(3)(2n 1)2 (2

3、n 1)4 (2n 1)6 (2n 1)(2n 2) (n(6)13(2 n1)(2n)(2 N2)2解的逆序数是n(n 1) 3 2(1)5 2 5 4 (2)(2 n1)2(2 n1)4(2 n1)6(2 n1)(2 N2)(n42(1)6 2 6 4(2)(2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1) 3将包含因子a11a23的项写入四阶行列式以求解包含因子a11a23的项的一般形式是(1)ta11a23a3ra4s当rs是2和4的排列时,有两个这样的排列,即24和42,因此包含因子a11a23的项分别是(1)ta 11a 23 a 32 a 44(1)1a 11

4、a 23 a 32 a 44 a 11 a 23 a 32 a 44)11(1)ta 11 a 23 a 34 a 42(1)2 a 11 a 23 a 34 a 42 a 11 a 23 a 34 a 42 4计算下列行列式41100 (1)1251202112514207 20214c2?c342?10c?7c10307441100解决方案?12302021?1024?1?10?14岁?122?(?1)4?30103?144?110c2?c39910?12岁?2?00吗?2?010314c1?12c31717142315 (2)1?120423611222315解决方案1?12042361

5、c4?c221?312521?12042360r4?r222?310221?12142340200r4?r123?101?120423002?000(3)?阿巴卡巴德?cddebfcf?仰角指示器解决办法?阿巴卡。bcebd?cdde?adfb?cebc?ebfcf?ef?111?adfbc1e?11岁?4abcdef11?1a。100 (4)1b?1001c?1001d0r1?ar201?ab0?1b10?1d00a?100种解决方案1b?1001c?1a1c?1001d1?aba0c3?dc21?阿巴德。(?1)(?1)2?1?1c1?1c1?cd0?1d0?10阿巴德。(?1)(?1)3

6、?21岁?11岁?激光唱片abcd ab cd ad 15证明:(1)a2abb22aa?B2B 111(a b)3;证明a2abb2c2?c1a2ab?a2b2?a22aa?b2b?2ab?a2b?2a00111c3?c113?1222ab?ab?aab?a。(?1)?(b )?a)(b )?a)12 b?a2b?2a(a)b)3斧头。拜伊。bzaz?bxxyzay?bzaz?bxax?被?(a3?b3)yzxaz?bxax?拜伊。bzzxy(2)证明斧头。拜伊。bzaz?bxay?bzaz?bxax?拜厄斯。bxax?拜伊。bz哈维。bzaz?bxyay?bzaz?bx?ayaz?bxax

7、?被?bzaz?bxax?byzax?拜伊。bzxax?拜伊。bz xay?bzzyzaz?bx?a2yaz?bxx?b2zxax?byzax?byyxyay?bz xyzyzx?a3yzx?b3zxyzxyxyz xyzxyz?a3yzx?b3yzxzxyzxy xyz?(a3?B3)yzx xya2b2c22d (3)证明(a?1)2(b?1)2(c?1)2(d?1)2(a?2)2(b?2)2(c?2)2(d?2)2(a?3)2(b?3)2?0(c?3)2(d?3)2;(a?3)2(b?3)2(c?3)2(d?3)2(c4a2b2c2d2(a?1)2(b?1)2(c?1)2(d?1)2(a

8、?2)2(b?2)2(c?2)2(d?2)2c3 c3 c2 c2 c1)a22b?c2d2a22b?c2d22a?12b?12c?12d?12a?12b?12c?12d?12a?32b?32c?32d?322222a?52b?52c?52d?5(c4C3 c3 c2)22岁?0221aa24a (4)1 bb 2b 41 C2C 41 DD 2d 4(a)(b)(a)(c)(a)(d)(b)(d)(c)(d)(a(b)(c)(d);证明1aa24a1 bb 2b 41 C2C 41 DD 2d 411110b?空调?广告?a。(b )?c(c )?a)d(d )?a)22222222220

9、b(b?c(c )?a)d(d )?a)111?(b )?a)(c )?a)(d )?a)bcd222b(b?c(c )?a)d(d )?a)111?(b )?a)(c )?a)(d )?a)0c?bd?b0c(c?b)(c )?b?a)d(d )?b)(d )?b?a)=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)1?(b )?a)(c )?a)(d )?a)(c )?b)(d )?b)c(c )?1b?a)d(d )?b?a)?1x?0an?10?1?0an?2?0000?x?1a2x?a1 (5)用数学归纳法证明。x0?0an xn a1xn 1 an

10、1x anx?1?x2?斧头。aD2?a12x?A21这个命题在n 2时成立假设阶(n 1)的行列式命题成立Dn 1 xn 1 a1 xn 2 an 2x an 1,则Dn在第一列中展开如下?1Dn?xDn?1?(?1)n?1?x?10?1?1?00吗?x00?1因此,n阶行列式命题是成立的。6设置n阶行列式D det(aij)并上下旋转D,或逆时针旋转90度,或按照次对角线翻转证明an1?第一年?a11?a1nD1?D2?(?1)a1n?安妮2?a11?an1安。?a1nD3?an1?a11n(n )?1)2D D3 D事实证明,由于dedet(共同执行活动)a11an1?第一年?(?1)n

11、?1an1?a11?a1na21?a1nann?a2na11a21?(?1)n?1(?1)n?2an1?a31?(?1)1?2?(n?2)?(n?1)?a1na2nann?a3nn(n )?1)2D?(?1)D同样可以证明。D2?(?1)n(n )?1)112a?an1?n(n )?1)n(n?1)Ta1n?安。(?1)2D?(?1)2Dn(n )?1)2d。(?1) 3n(n?1)2D2?(?1)(?1)n(n?1)2D?(?1)n(n?1)D?D7计算下列行列式(Dk是k阶的行列式)aDn?(1)解决方案1?1a,对角线元素是00a?00吗?未写入的元素都是0a0Dn?0?010a0?00

12、000?a0000?a100?0a(按线N展开)10a02n?(?1)?a。?a(n )?1)?(n?1)0(n?1)?(n?1)?一0an?1?(?1)0?000a?0000?0a?(?1)n?1?(?1)n?a(n )?2)(n?2)an 2 an 2(a2 1)xDn?a。?a (2)斧头。?a。?aa?x;?a。?0?0?0x?解决方案a将乘以(1)的第一行分别添加到其余行将每列添加到第一列xaaa?xx?a0Dn?a。x0x?a。?a。x00x?(n?1)aaa0x?a0Dn?00x?a。?000?a。?0?0?0x?ax (n 1)a(x a)n 1an(a )?1)南京?1(a?

13、1)n?1Dn?1?aa?111 (3)?(a?n)n?(a?n)n?1?a。n?1;?1?a。n?(a?n)n?1?(a?n)n根据问题6,结果是11a?1n(n?1)aDn?1?(?1)2?安?1(a?1)n?1 na(a?1)这个行列式是范德蒙德行列式。Dn?1?(?1)n(n )?1)2n?1?我?j。1?我?1)?(a?j。1)?(?1)n(n )?1)2n?1?我?j。1?(I?j)?(?1)n(n )?1)2?(?1)n?(n?1)?12岁?n?1?我?j。1?(I?j)?n?1?我?j。1?(I?j)?2n呢?(4)解决方案a1b1c1d1?bncndn。2n呢?a1b1c1d

14、1?Bncndn(按第1行展开)安?1?b?n?10?aanc1db111?c?nd 0?1?n?1d0n0an?1?bn?1?(?1)2n?1bac1b1n1d1?c?n?1d cn0n?1递归公式根据最后一行展开d2n N2 bn cn2 N2是d2n(andbncn)d2dn 2n?我?因此,D2?(艾迪?2Da2?c1b1?ad1?B1c和1d111Dn2n?所以呢。(艾迪?我?1(5) dedet(共同执行活动),其中共同执行活动| i j |理解共同执行活动|i j|011023?nnDn?deta(ij)?211?3?n?1?n?23n?1n?202?2n?11岁?03n?4?0

15、?4?1?111?r1?r2。11岁?1?111r?1?1?11岁?1?1?2?r3n?1n?1?2n?1?1?3n?4?10?2?1c2?c1?11岁?1c3?c1?n?1000?200?2?20?2?2?2?2n?32n?42n?5?0000?n?1(1)n 1(n 1)2n 21?a11Dn?11岁?a2?11 (6)解决办法?1?1?1?其中a1a21?a11Dn?11岁?a2?11岁?1?1?1?一a1c1?c2?a2?0c2?c3?0?00a2?a3?0000a3?00吗?0?0?0?安?1?0010101?安?11岁?an1?一1?1?a1a2?an0?00100?a1a2?安?

16、001?1?00010?0001?00001?0?000?10000?00a1?1?10a2?10a3?11月?1?1?11岁?一千块?1a1?1?1a2?1a3?1an?1ni?1000?001?人工智能?1?(a1a2?an)(1?1)我?1ai8用克莱姆定律解下列方程n?x1?x2?x3?x4?5?x1?2x2?x3?4x4?2?2x?3x?x?5x?2234?3x1?x?22x3?11x4?0 (1)?1个原因1D?12312岁?311?1?1214?142?51152D1?201D3?12312?311?1?12114?142度?12岁?521135?2?201?1?1214?284

17、?51112岁?315?2?20114年?426D?142?511312岁?311?1?125?2?142?20因此x1?DD1DD?1x2?2?2x3?3?3x4?4?1DDDD?1?5x1?6x2?0?x1?5x2?6x3x2?5x3?6x4?0?x3?5x4?6x5?0?x4?5x5?1(2)?解决原因51D?000651000651000651000?6656510D1?00151D3?000 51D5?000因此6510065100651000651010001065100065100651006510510000106000?1507D2?00560?114560015650101

18、5 0560100156000?703D4?01500?395600106500015 100?21201x4?212x1?1507x2?1145x3?703x4?395665 665 665 665 665当被问及9是什么值时,解系数的行列式是?x1?x2?x3?0?x1?x2?x3?0?x?2?x2?x3?0齐次线性方程?1有非零解吗?11D?1?1?12岁?1让D 0赢0或1所以当0或1时,齐次线性方程有非零解当被问及什么值时,解系数的行列2?3y3从变量x1 x2 x3到变量y1 y2 y3的线性变换解已知如下?x1?221?y1?x?315?y。?x2?323?y2?2?3?1?y1

19、?221?x1?7?49?y1?y。?315?x?63?7?y。?y2?323?x2?32岁?4?2?3?y3?所以呢。2?y1?7x1?4x2?9x3?y2?6x1?3x2?7x3?y3?3x1?2x2?4x3?x1?2y1?y3?x2?2y1?3y2?2y3?x3?4y1?y2?5y3已知两种线性变换?y1?3z1?z2?y2?2z1?z3?y3?z2?3z3找到从z1 z2 z3到x1 x2 x3的线性变换解决方案可从以下几个方面了解?x1?201?y1?201?31岁?x?232?y。?232?20?x2?415?y2?415?0?1?2?3?0?z1?1?z2?z?3?3?613?z

20、1?12岁?49?z2?10?116?z?3?x1?6z1?z2?3z3?x2?12z1?4z2?9z3?x?10z1?z2?16z3所以有?33?111?123?a。?11岁?1?b?1?24岁?1?11岁?051?建立找到3AB 2A和ATB?111?123?111?3AB?2A?3?11岁?1?1?24岁?2?11岁?1?1?11岁?051?1?11岁?解决办法?058?111?21322?3?0?56?2?11岁?1?2?1720年?290?1?11岁?429?2?111?123?058?全地形车?11岁?1?1?24岁?0?56?1?11岁?051?290?4计算以下产品?431?7

21、?1?23岁?2?570?1?(1)?431?7?4?7?3?2?1?1?35?1?23岁?2?1?7?(?2)?2?3?1?6?570?1?5?7?7?2?0?1?49?解决方案?3?(123)?2?1?(2)解决办法?3?(123)?2?1?(1 3 2 2 3 1) (10)?21岁?(?12) (3)?3?2?2?(?1)2?21岁?(?12)?1?(?1)1?2?242?解决办法?3?3?(?1)3?2?1?36岁?31岁?22岁?1?114304?10?1?1 (4)?403?1?2?1?1?2?1?114304?0?31岁?132?解决办法?40?1?2?6?78?20?5?6?

22、(x?a11a12a13?x1?1x2x3)?a12a22a23?x (5)?a。?x2?13a23a33?3?解决办法(x?a11a12a13?x1?1x2x3)?a12a?a13a22a23a23?x2?33岁?x3?(a11x 1 a12x 2 a13x 3 a12x 1 a22x 2 a23x 3 a13x 1 a23x 2?a11x12?a22x22?a33x32?2a12x1x2?2a13x1x3?2a23x2x3a。?12 3?b?5设置?1?1?102?要求(1)工商管理学士?解决方案阿布?34岁?46?2?文学士?因为。38岁?所以AB BA?x?x1?a33x3)?x2?3

23、?(2)(甲乙)2 A2 2AB B2?解决方案(甲乙)2 A2 2AB B22A?b?2?因为.2?5?2(A?B)2?2?2?2?25?2?814?1429?5?但是.38岁?68岁?10?1016?A2?2AB?B2?411?812?34岁?1527?所以(甲乙)2 A2 2AB B2(3)(甲乙)(甲乙)A2 B2?解决方案(甲乙)(甲乙)A2 B22A?b?2?因为.2?5?什么?b?0?2?0?5?02?1?2(A?乙)(甲?b)?2?2?0?1?06?9?和38岁?1A2?B2?411?3?0?2?14岁?8?7?因此,(甲乙)(甲乙)A2 B2(1)如果A2 0是A 0,则a0

24、什么?0?以1A为例?0?解决办法1?0?1?0?然后是A2 0,但是A 0(2)如果A2 A、A 0或A E然后是A2 A,但是A 0和A0 E(3)如果AX AY和A 0,则为X Y解决办法1A?0?0?0?1111X?11岁?是吗?01?AY和A 0但X Y710A?1?建立寻找A2 A3 Ak解决办法1A2?0?1?1?0?10?2?1?1?10?1A3?A2A?2?1?1Ak?k?0?1?0?10?1?3?1?8?10?a。?0?1?00吗?建立问Ak首先观察溶液。21岁?10?10?2?2A2?0?1?0?1?0?2?00吗?00吗?00吗?2?33岁?23岁?A3?A2?a。?0

25、?33岁?2?00吗?3?44?36岁?2?A4?A3?a。?0?44?3?00吗?4?55?410?3?A5?A4?a。?0?55?4?00吗?5?kk?k?1k(k?1)?k?2?k2A?kk?10?k?k00?用数学归纳法证明当k 2明显成立时,假设K成立,那么k 1,?kk?k?1k(k?1)?k?2?10?2Ak?1?Ak?a。?0?kk?k?1?0?1?00吗?00吗?k?k?1(k?1)?k?1(k?1)k?k?1?2?0?k?1(k?1)?k?1?k?100?从数学归纳法的原理出发?kk?k?1k(k?1)?k?2?2Ak?0?kk?k?1?00吗?k?设甲乙是n阶矩阵,甲乙是

26、对称矩阵,证明BTAB也是对称矩阵。证明因为美国电话电报公司因此BTAB是一个对称矩阵10假设甲乙是n阶对称矩阵,证明甲乙是对称矩阵的充要条件是甲乙是对称矩阵,因为甲乙和甲乙是对称矩阵,所以ATBT甲乙是对称矩阵。BTAT 11找到了下一个矩阵的逆矩阵,因为1?2 (1)?解决办法2?5?1A?2?2?5?| A 1 | A1所以A1存在是因为A11A21?5?2?A*?戒酒协会?21岁?1222?5?2A?1?1A*?21岁?|A|?因此.因为。?罪恶。?罪恶。因为。?(2)?解决办法co?s?罪恶。?a。?罪恶。?co?| A 1 | 10所以A1存在是因为A*?A11A?a。?co?辛恩

27、。?12A2122?罪恶。co?s?a。1?1|A|A*?csoi?是的n?加入吗?s?132?1?(3)?5?44?12岁?a。?12岁?1?解决办法?34岁?2?5?41岁?|A| 2 0所以A 1有A*?A11A21A31?420?A12A22A32?a。?136?1?13A23A33?3214?2?21A?1?1A?130?23岁?1?2?因此|A|*?167?1?a1a0?2?0?(4)?安?(a1a20)?a。?a10?a2?0?解决方案?安?从对角矩阵的性质看因为.?x1?1?1?x?k?1?0?x2?1?0?(k是常数)那是?3?当2点钟?211?2?10?12岁?b?1?21岁?2?01?12岁?11岁?24岁?0000?方程的解是?x1?x3?2?x1?x3?2?x2?x3?2?

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1