1、五年级上册数学期末复习知识点归纳人教版小学五年级上册数学知识点预习精编小数乘法1、小数乘整数(P2、3):意义-求几个相同加数的和的简便运算。如:1.53表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。2、小数乘小数(P4、5):意义-就是求这个数的几分之几是多少。如:1.50.8就是求1.5的十分之八是多少。1.51.8就是求1.5的1.8倍是多少。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。 注意:计算结果
2、中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 4、求近似数的方法一般有三种:(P10) 四舍五入法; 进一法; 去尾法 5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。 6、(P11)小数四则运算顺序跟整数是一样的。 7、运算定律和性质: 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法:乘法交换律:ab=ba 乘法结合律:(a
3、b)c=a(bc) 乘法分配律:(a+b)c=ac+bc【(a-b)c=ac-bc】 除法:除法性质:abc=a(bc) 小数除法 1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。 3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。 注意:
4、如果被除数的位数不够,在被除数的末尾用0补足。 4、(P23)在实际应用中,小数除法所得的商也可以根据需要用四舍五入法保留一定的小数位数求出商的近似数。5、(P24、25)除法中的变化规律:商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。被除数不变,除数缩小,商扩大。 6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232的循环节是32. 7、小数部分的位数是有限的小数,叫做有限
5、小数。小数部分的位数是无限的小数,叫做无限小数。观察物体1、正确辨认从上面、前面、左面观察到物体的形状。2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。 3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。 4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。 5、从不同的位置观察,才能更全面地认识一个物体。简易方程1、(P45)在含有字母的式子里,字母中间的乘号可以记作,也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。 2、aa可以写作aa或a,a读作a的平方。2a表示a+a 3、方程:含有未知数的等式称
6、为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。 4、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 5、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数因数 一个因数=积另一个因数 除法:商=被除数除数 被除数=商除数 除数=被除数商 6、所有的方程都是等式,但等式不一定都是方程。 7、方程的检验过程:方程左边= 8、方程的解是一个数; 针对练习1.判断下面的说法是否正确。 (1)方程都是等式,但等式不一定是方程。( ) (2
7、)含有未知数的等式叫做方程。( ) (3)方程的解和解方程是一样的。( ) (4)10=4x-8不是方程。( ) (5)x=0是方程5x=5的解。( ) (6)9.3-1.3=10-2是等式。( ) 2.解方程。 x+53=102x-17=54 x-0.9=1.2x+310=690 8.5+x=10.2x-0.74=1.5多边形的面积1、公式:长方形:周长=(长+宽)2-【长=周长2-宽;宽=周长2-长】字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4字 母公式:C=4a 平行四边形的面积=底高字母公式:S=ah 三角形的面积=底高2-【底=面积2高; 高=面积
8、2底】字母公式:S=ah2 梯形的面积=(上底+下底)高2字母公式:S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】 2、平行四边形面积公式推导:剪拼、平移 3、三角形面积公式推导:旋转平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长宽,所以平行四边形面积=底高。 因为平行四边形面积=因为平行
9、四边形面积=底高,所以三角形面积=底高2 4、梯形面积公式推导:旋转 5、三角形、梯形的第二种推导方法老师已讲,自己看书 两个完全一样的梯形可以拼成一个平行四边形,知道就行。 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高; 平行四边形面积等于梯形面积的2倍, 因为平行四边形面积=底高,所以梯形面积=(上底+下底)高2 6、等底等高的平行四边形面积相等; 等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。 7、长方形框架拉成平行四边形,周长不变,面积变小。8、组合图形:转化成已学的简单图形,通过加、减进行计算。统计与可能性 一、统计图的分类及点(1)
10、条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。 作用:从条形统计图中很容易看出各种数量的多少。(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。(3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。 作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。折线统计图不但能反映数据(量)的多少,更能反映某一项目在某一时间
11、内的数据(量)增减变化情况. 二、平均数、众数、中位数比较相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。 不同点 它们之间的区别,主要表现在以下方面。 1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。 众数:在一组数据中出现次数最多的数叫做这组数据的众数。2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个
12、数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。 众数:一组数据中出现次数最多的那个数,不必计算就可求出。 3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。 4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数
13、,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。 众数:是一组数据中的原数据,它是真实存在的。 5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。 中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。 众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。 这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表 6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均
14、数将会被抬高,当出现偏小数时,平均数会降低。 中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。 众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。 7、作用不同 平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩
15、、平均身高、平均体重等。中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。 众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。 平均数、中位数和众数的联系与区别: 平均数应用比较广泛,它作为一组数据的代表,比较稳定、可靠。但平均数与一组数据中的所有数据都有关系,容易受极端数据的影响;简单的说就是表示这组数据的平均数。中位数在一组数据中的数值排序中处于中间的位
16、置,人们由中位数可以对事物的大体进行判断和掌控,它虽然不受极端数据的影响,但可靠性比较差;所以中位数只是表示这组数据的一般情况。众数着眼对一组数据出现的频数的考察,它作为一组数据的代表,它不受极端数据的影响,其大小与一组数据中的部分数据有关,当一组数据中,如果个别数据有很大的变化,且某个数据出现的次数较多,此时用众数表示这组数据的集中趋势,比较合适,体现了整个数据的集中情况。平均数、中位数和众数它们都有各自的的优缺点:平均数:(1)需要全组所有数据来计算; (2)易受数据中极端数值的影响. 中位数:(1)仅需把数据按顺序排列后即可确定; (2)不易受数据中极端数值的影响. 众数:(1)通过计数
17、得到; (2)不易受数据中极端数值的影响 三、可能性大小 可能性的大小与物体的数量多少有关,可能用分数来表示可能性的大小第七单元数学广角知识点 1、数不仅可以用来表示数量和顺序,还可以用来编码。 2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。3、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码; (2)第3、4位数字表示:所在城市的代码; (3)第5、6位数字表示:所在区县的代码; (4)第714位数字表示:出生年、月、日; (5)第15、16位数字表示:所在地的派出所的代码; (6)第17位数字表示性别:奇数表示男性,偶数表示女性; (7)第18位数字是校检码: 用来检验身份证的正确性。校检码可以是09的数字,有时也用x表示。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1