1、第2章 时域离散信号和系统的频率分析成 绩: 数字信号处理作业与上机实验(第二章) 班 级: 学 号: 姓 名: 任课老师: 完成时间: 2014.10.18 南湖学院 20132014学年第 2 学期第2章 时域离散信号和系统的频率分析1、设计两个数学信号处理系统:系统初始状态为零。分别用这两个系统对数字信号:进行处理。该信号为缓慢变化的指数信号()上叠加了一个正弦干扰噪声序列,我们希望通过该系统对进行处理来消除这个正弦干扰噪声。1).应用dtft子程序分析信号的频谱,并用MATLAB工具画出 matlab代码 %dtft函数 functionX,w=dtft(x,n,dw,k)X=x*(e
2、xp(-1j*dw).(n*k);w=dw*k;end%x(n)的频谱n=0:140;x=1.02.n+0.5*cos(2*pi*n/8+pi/4);k=-1500:1500;dw=(pi/500);X,w=dift(x,n,dw,k);magX=abs(X);angX=angle(X);subplot(2,1,1);plot(w/pi,magX); axis(0,pi,0,800); figure(1)subplot(2,1,2);plot(w/pi,angX);axis(0,1,-4,4);figure(1) 信号x(n)的频谱图如图一所示 图一 x(n)的频谱图2). 应用Hmp子程序分
3、析系统一与系统二的频谱特性,画出频谱图()。 matlab代码 %Hmp函数 functionH,w=Hmp(b,a,dw,k)M=length(b)-1;N=length(a)-1;ib=0:M;ia=0:N;H=(b*(exp(-j*dw).(ib*k)./(a*(exp(-j*dw).(ia*k);w=dw*k;end%系统一的频谱特性b=1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8;a=1;n=0:100;h=impz(b,a,n);k=-100:100;dw=(2*pi/80);X,w=dift(h,n,dw,k);mag=abs(X);figure(2)subpl
4、ot(2,1,1);plot(w/pi,mag);angX=angle(X);subplot(2,1,2);plot(w/pi,angX);figure(2)%系统二的频谱特性b=1,-1.4142,1;a=1,-1.3576,0.9216;k=-100:100;dw=(2*pi/80);X1,w1=Hmp(b,a,dw,k);magX=abs(X1);figure(3)subplot(2,1,1);plot(w1/pi,magX);axis(0,1,0,1.5);angX=angle(X1);subplot(2,1,2);plot(w1/pi,angX);axis(0,1,-4,4);fig
5、ure(3)系统一与系统二的频谱图如图二、图三所示 图二 系统一频谱图 图三 系统二频谱图3). 分别对这两个系统在微机上基于迭代法编程实现该信号处理算法,求解处理后的信号,画出波形。应用dtft子程序分析信号的频谱,并用MATLAB工具画出画出频谱图()。matlab代码%dtft函数functionX,w=dtft(x,n,dw,k)X=x*(exp(-1j*dw).(n*k);w=dw*k;end%系统一n=0:140;x=1.02.n+0.5*cos(2*pi*n/8+pi/4);y0=1/8*(x(1);y(1)=y0;y1=1/8*(x(1)+x(2);y(2)=y1;y2=1/8
6、*(x(1)+x(2)+x(3);y(3)=y2;y3=1/8*(x(1)+x(2)+x(3)+x(4);y(4)=y3;y4=1/8*(x(1)+x(2)+x(3)+x(4)+x(5);y(5)=y4;y5=1/8*(x(1)+x(2)+x(3)+x(4)+x(5)+x(6);y(6)=y5;y6=1/8*(x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7);y(7)=y6;For m=8:1:141 y(m)=1/8*(x(m)+x(m-1)+x(m-2)+x(m-3)+x(m-4)+x(m-5)+x(m-6)+x(m-7);endstem(n,y);figure(1)k
7、=-1500:1500;dw=(pi/500);Y,w=dift(y,n,dw,k);magY=abs(Y);figure(2)subplot(2,1,1);plot(w/pi,magY);axis(0,1,0,800);angY=angle(Y);subplot(2,1,2);plot(w/pi,angY);axis(0,1,-4,4);figure(2)%系统二y(1)=x(1);y(2)=1.3576*y(1)+x(2)-1.4142*x(1);for m=3:1:141 y(m)=1.3576*y(m-1)-0.9216*y(m-2)+x(m)-1.4142*x(m-1)+x(m-2)
8、;endfigure(3)stem(n,y);k=-1500:1500;dw=(pi/500);Y,w=dift(y,n,dw,k);magY=abs(Y);figure(4)subplot(2,1,1);plot(w/pi,magY);axis(0,1,0,800);angY=angle(Y);subplot(2,1,2);plot(w/pi,angY);axis(0,1,-4,4);figure(4)系统一、二处理后信号y(n)的波形图如图四、图五,频谱图如图六图七 图五 系统一的响应y(n) 图四 系统二的响应y(n) 图七 y(n)频谱图 图六 y(n)频谱图4).从信号频谱与系统频率
9、特性的角度,对两种系统的响应进行比较研究。根据比较结果对两种系统性能进行评价。画出各种比较结果图。matlab代码n=0:140;x=1.02.n+0.5*cos(2*pi*n/8+pi/4); k=-2000:2000;dw=pi/500;X,w=dift( x,n,dw,k ); magX=abs(X);%系统一y0=1/8*(x(1);y(1)=y0;y1=1/8*(x(1)+x(2);y(2)=y1;y2=1/8*(x(1)+x(2)+x(3);y(3)=y2;y3=1/8*(x(1)+x(2)+x(3)+x(4);y(4)=y3;y4=1/8*(x(1)+x(2)+x(3)+x(4)
10、+x(5);y(5)=y4;y5=1/8*(x(1)+x(2)+x(3)+x(4)+x(5)+x(6);y(6)=y5;y6=1/8*(x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7);y(7)=y6;for m=8:1:141y(m)=1/8*(x(m)+x(m-1)+x(m-2)+x(m-3)+x(m-4)+x(m-5)+x(m-6)+x(m-7);endY,w=dift(y,n,dw,k); magY=abs(Y); plot(w/pi,magX,w/pi,magY,*);axis(0.2,0.4,0,35);%系统二y(1)=x(1);y(2)=1.3576*y(1
11、)+x(2)-1.4142*x(1);for m=3:1:141y(m)=1.3576*y(m-1)-0.9216*y(m-2)+x(m)-1.4142*x(m-1)+x(m-2);endY,w=dift(y,n,dw,k); magY1=abs(Y); figure(2)plot(w/pi,magX,w/pi,magY1,*);axis(0.2,0.4,0,35);figure(3)plot(w/pi,magY,*,w/pi,magY1);axis(0.2,0.4,0,30);结果比较图如图八、九、十 图八 信号x(n)与系统一的响应y(n)两者的幅度谱比较 图九 信号x(n)与系统二的响应
12、y(n)两者的幅度谱比较 图十 系统一的响应y(n)与系统二的响应y(n)两者的幅度谱比较评价:由图八可知,信号x(n)与系统一的响应y(n)两者的幅度谱在0.2-0.3频率范围内波动较大,系统一的幅度谱波形较平稳,说明系统一消除正弦干扰频率点较强,所以系统一消除正弦干扰噪声的效果比较好,系统性能较好。由图九可知,信号x(n)与系统二的响应y(n)两者的幅度谱在0.2-0.3频率范围内相差小,说明系统二的幅度谱中还包含着正弦干扰频率点,所以系统二消除正弦干扰噪声的效果不好,系统性能较差。由图十可知,系统一的响应y(n)与系统二的响应y(n)两者的幅度谱在0.2-0.3频率范围内相比较,系统一的
13、幅度谱波形较平稳,受正弦干扰较小,系统二的幅度谱波形波动较大,受正弦干扰较大,所以系统一的性能比系统二的性能好。5).对系统一,相对的时延是多少?该系统会引起信号的相位失真吗?根据系统一的相频特性做出回答。matlab代码如下:%Hmp 函数function H,w=Hmp(b,a,dw,k)M=length(b)-1;N=length(a)-1;ib=0:M;ia=0:N;H=(b*(exp(-j*dw).(ib*k)./(a*(exp(-j*dw).(ia*k);w=dw*k;Endb=1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8;a=1;k=-100:100;dw=(2
14、*pi/80);X,w=Hmp(b,a,dw,k );angX=angle(X);grp=-1*(angX/w);运算结果 grp=0.0178 所以相对的时延是0.0178由上可知相对的时延是常数,说明系统相频特性是线性相位,所以不会引起信号的相位失真2、在电子、通信和信息传输中,常常要使用正弦信号发生器。设计一数字振荡器(数字信号处理系统),并通过迭代方法产正弦信号。1).求出参数。解:由题可知 2).求数字振荡器系统函数与差分方程。 解:3).用迭代法编程产生正弦信号。 matlab代码如下: w=0.1*pi; n=0:50; x=(n=0); y(1)=0; y(2)=2*cos(w)*y(1)+2*sin(w); for m=3:51 y(m)=2*cos(w)*y(m-1)-y(m-2)+2*sin(w)*x(m-1); end plot(n,y); figure(1) 正弦信号见图十一 图十一 正弦信号波形 4).通过该题,对系统函数有何认识?答:通过该题我认识到在频域中,系统函数由频域下的响应与激励的比值决定,系统通过系统函数对输入信号进行加工处理得出我们想要的输出信号,不同频域的系统函数表示了不同频域下系统的特性,从而实现系统的功能。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1