1、完整word版奥数题高难度1。图形:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG图形答案:2。 图形面积:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T问:图中阴影部分(与梯形BTFG)的总面积等于多少?应用题:(高等难度)3。我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6。9元外,超过部分每立
2、方米按一定费用交费,某饭店1月份煤气费是82。26元,8月份煤气费是40。02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元 应用题答案:4。 乒乓球训练(逻辑):(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局那么整个训练中的第3局当裁判的是_乒乓球训练(逻辑)答案:本题是一道逻辑推理要求较高的试题首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的
3、比赛进行的局数丙当了5局裁判,则甲乙进行了5局;甲一共打了15局,则甲丙之间进行了15-5=10局;乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局此时根据已知条件无法求得第三局的裁判但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开所以可以知道第奇数局(第1、3、5、局)的比赛是在乙丙之间进行的那么,第三局的裁判应该
4、是甲5. 奇偶性应用:(高等难度)在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝。求证至少有一珠子被染上过红、蓝两种颜色奇偶性应用答案:假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色。设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色.则染红色次数为2m次。2m1987(偶数奇数)假设不成立。至少有一个珠子被染上红、蓝两种颜色。6。 整除问题:(高等难度)一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数整除问题答案:这是一道古算题。它早在孙子算经中记有:今有物不知其数,三
5、三数之剩二,五五数之剩三,七七数之剩二,问物几何?关于这道题的解法,在明朝就流传着一首解题之歌:”三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去 105,直至小于105为止。这样就可以得到满足条件的解.其解法如下:方法1:270+321+215=2332331052=23符合条件的最小自然数是237。 平均数:(高等难度)有4个不同的数字共可组成18个不同的4位数将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也
6、是完全平方数那么这18个数的平均数是:_平均数答案:8. 追击问题:(高等难度)如下图,甲从A出发,不断往返于AB之间行走。乙从C出发,沿C-E-FDC围绕矩形不断行走。甲的速度是5米/秒,乙的速度是4米/秒,甲从背后第一次追上乙的地点离D点_米。追击问题答案:9。 正方形:(高等难度)如图所示,ABCD是一边长为4cm的正方形,E是AD的中点,而F是BC的中点.以C为圆心、半径为4cm的四分之一圆的圆弧交EF于G,以F为圆心、半径为2cm的四分之一圆的圆弧交EF于H点,正方形答案:10. 求面积:(高等难度)下图中,ABCD是边长为1的正方形,A,E,F,G,H分别是四条边AB,BC,CD,
7、DA的中点,计算图中红色八边形的面积求面积答案:至此,我们对各部分的面积都已计算出来,如下图所示。【又解】设O为正方形中心(对角线交点),连接OE、OF,分别与AF、BG交于M、N,设AF与EC的交点为P,连接OP,MOF的面积为正方形面积的,N为OF中点,OPN面积等于FPN面积,又OPN面积与OPM面积相等,所以OPN面积为MOF面积的,为正方形面积的,八边形面积等于OPM面积的8倍,为正方形面积的。11. 阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在ABC外作半圆AEC和BFC当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最
8、大。阴影面积答案:12。 得奖人数:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?得奖人数答案:解答:设获奖人数为x,则所以x=111(人)13. 竞赛:(高等难度)光明小学六年级选出的男生的1/11和12名女生参加数学竞赛,剩下的男生人数是剩下的女生人数的2倍。已知六年级共有156人,问男、女生各有多少人?竞赛答案: 女生人数:156-99=57(人).14. 粮食问题:(高等难度)甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?粮食问题答案:甲仓有粮:(80120)(160%)=125(吨)。从乙仓调入甲仓粮食:12580=45(吨).出三个正方形的边长是成比例缩小的,即为一个等比数列,而这个比就要用到相似三角形的知识点。这在以前讲沙漏原理或者三角形等积变形等专题的时候提到过。可以说是一道难度比较大的题。当然对于这种有特点.15. 分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?分苹果答案:
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1