ImageVerifierCode 换一换
格式:DOCX , 页数:66 ,大小:140.67KB ,
资源ID:8542      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8542.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(代数结构同态的方法及应用.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

代数结构同态的方法及应用.docx

1、代数结构同态的方法及应用代数结构同态的方法及应用摘要本文简要介绍了群论的相关概念,其中主要介绍了群的概念、子群的概念、和不变子群的概念以及子群的判别方法和不变子群的判别方法。重点介绍了群同态概念、群同态的基本定理以及群同态基本定理的运用。利用子群、不变子群以及群同态基本定理推出一系列与同态基本定理相关定理。是同态基本定理的延伸和运用,对群论和群同态的后续研究起到了非常重要的作用。最后通过一系列典型例子进一步讨论了群同态基本定理的运用。关键字: 群;子群;不变子群;群同态Algebraic structure and its application with the stateAbstractT

2、his paper introduces the concepts of group theory which introduces the group concept, the concept of subgroups, and the concept of invariant subgroups and sub-group discrimination method and the same sub-group discrimination method. Focuses on the concept of group homomorphisms, groups, and the fund

3、amental theorem of homomorphisms of the fundamental group of the application. Use of subgroups, invariant subgroup, and the fundamental theorem of groups launched a series of correlation of the fundamental theorems. Is the fundamental theorem of the extension and application of group theory and grou

4、p follow-up study with the state played a very important role. Finally, a typical example of a group to further discuss the application of the fundamental.Keywords: group; subgroup; invariant subgroup; group homomorphism目 录第一章 绪论 41.1引言 4第二章 群论的基本概念 52.1群的概念 52.2子群、不变子群的判别方法 72.3同态的概念及基本定理 8第三章同态基本定

5、理的运用 93.1同态的相关定理 93.2 同态同态基本定理的运用 13结 论 19致 谢 20参 考 文 献 21附录X 译文 22附录Y 外文原文 25第一章 绪论1.1引言代数结构主要有群、环、域、模等。这些概念大多都是在十九世纪产生的,如群的概念是19世纪30年代由法国青年数学家Galois首先提出的,他在解决用根式求解五次方程时发现了群。他不仅彻底地解决了一元n次方程用根式求解是否可能的问题,而且也使人们认识到除了数集外,在其他集合上也可能存在着代数结构,即满足一定规则的运算,而这种代数结构正是群论。群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构

6、观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。群的同态与同构都是研究群与群之间关系的重要手段。同构映射是群之间保持运算的映射,存在同构映射的两个群可以看成同一个群,因为它们有相同的群结构。代数中最基本与最重要的课题就是搞清楚各种代数体系在同构意义下的分类。而同态映射只要求保持运算,显然它比同构映射更灵活,它能研究两个不同构的群之间的联系。特别重要的是几个同态定理,如同态基本定理告诉我们,两个群在满同态的条件下蕴含着一个群同构(G1/

7、kerfG2)!在处理一些同构问题时,我们也常常反过用这个定理,也就是说先构造出满同态。保持运算的映射既然能研究两个代数体系之间的一些关系,那么对于复杂一些的代数体系我们就可以用一些简单的去研究它们。第二章 群论的基本概念2.1群的概念定义一:设G是一个非空集合,是它的一个代数运算,如果满足以下条件:1 .结合律成立,即对G中任意元素a,b,c都有 (ab) c=a (bc);2 .G中有元素e,叫做G的左单位元,它对G中每个元素a都有 ea=a;3 .对G中每个元素a在G中都有元素啊a,叫做a的左逆元,使aa=e;则称G对代数运算做成一个群。定义二: 一个有单位元的半群(G)叫做一个群,如果

8、G的每个元皆为正则元。 定义三:如果一个半群(G)有一个左单位元e使ea=a,存在并且,对每一有左逆元,则是一个群定义四:如果(G)是一个半群,若对于G中任意a,b,方程ax=b,ya=b在G中都有解,则G是一个群定义五:一个不空集合G对于一个叫做乘法的代数运算来说作成一个群,假如1G对于这个乘法来说是封闭的;2结合律成立:a(bc)=(ab)c对于的任意三个元a,b,c都对;3. 对于的G任意两个元来说a,b,方程ax=b和ya=b都在G里面有解定义六:一个不空集合G对于一个叫做乘法的代数运算来说作成一个群,假如1G对于这个惩罚来说是封闭的;2结合律成立:a(bc)=(ab)c对于的任意三个

9、元a,b,c都对;3G里至少存在一个左单位元e,能让ea=e对于的G任何元a都成立;4对于G的每个元a,在G里至少存在一个左逆元a,能让aa=e注:群的定义是多种的,需要根据具体情况而定选择哪一种定义方式,例如验证非空集合关于一个乘法运算是否作成群,一般必须检验乘法的封闭性、结合律、单位元的存在以及逆元的存在。2.2子群、不变子群的判别方法一、子群的概念:一个群G的一个子集H叫做的一个子群,假如H对于G的乘法来说做成一个群。二、子群的判别方法定理一:一个群G的一个不空子集H作成G的一个子群的充分而且必要条件是: 1a,bHabH2. aH aH定理二:一个群G的一个不空子集H作成G的一个子群的

10、充分而且必要条件是:3. a,bH abH定理三:一个群G的一个不空子集H作成G的一个子群的充分而且必要条件是:a,bH abH三、不变子群的定义:一个群G的一个子群N叫做一个不变子群,假如对于G的每一个元a来说都有Na=aN一个不变子群N的一个左(或右)陪集叫做N的一个陪集。四、不变子群的判别方法定理一:一个群G的一个子群N是一个不变子群的充分而且必要条件是:aNa=N对于G的任意一个元a都对。定理二:一个群G的一个不空子集H作成G的一个子群的充分而且必要条件是:aG,nN aN2.3同态的概念及基本定理一、同态的概念: 设,是两个群,到的一个映射f是到的一个同态映射,如果对于任意的a,b,

11、均有f(ab)=f(a)f(b)。注:(1)若到的同态映射f是到的满射,则说f是到的满同态,记为,这是称为在f(作用)下的同态象。 (2)若到的同态映射f是到的单射,则说f是到的单一同态。 (3) f既是到的满同态又是到的单一同态,则说f是到的同构映射,记为。二、同态的基本定理:设是一个群,则的一个商群/N与同态;反之,若和是两个群,并且和同态,那么这个同态满射的核N是的一个不变子群,并且/N。注:定理前一部分告诉我们,一个群和它的每一个商群同态;定理后面部分告诉我们,抽象的来看,只能和它的商群同态,所以我们可以说定理后面部分是定理前一部分的反面。我们知道,当群和同态的时候,的性质并不同的完全

12、一样,但定理后面部分告诉我们,这时我们一定找得到的一个不变子群N,使得的性质和商群/N的完全一样。从这里我们可以看出不变子群和商群的重要意义。第三章同态基本定理的运用3.1同态的相关定理定理一(同态的基本定理):设是一个群,则的一个商群/N与同态;反之,若和是两个群,并且和同态,那么这个同态满射的核N是的一个不变子群,并且/N。证明: (1) 我们规定一个法则 ()这显然是到/N的一个满射,对于的任意两个元和b来说,b= () () 所以它是一个同态映射。 (2) 我们用f来表示给的同态满射,假定和是的任意两个元,那么在f之下, 因此, =这就是说, , 是的一个子群,假定,,而且在f之下,

13、那么在f之下 , n=这就是说, ,n是的一个子群。现在规定一个法则g: = g() ()我们说,这是一个/N与间同构映射。因为: (1)= =这就是说,在g之下/N的一个元素只有一个唯一的象;(2)给了的一个任意元,在里至少有一个元满足条件g(a)= 由g的定义给的这就是说,g是/N到的满射。 (3) (4)在g之下,= 这样 /N 定理二:若和是两个群,并且和同态。那么在这个同态满射之下的 (1)的一个子群的象是的一个子群; (2)的一个不变子群的象是的一个不变子群。证明:我们用f来表示给定的同态满射(1)假定和是的任意两个元,并且在f之下, () 那么在f之下但由于是子群, ,因此由于是在f之下的象, 。这样, 是的一个子群。(2)既是一个不变子群,由(1)知,我们知道是一个子群。假定是的任意元,是的任意元,而且在f之下, ()那么在f之下但由于是一个不变子群, n,因此由于是在f之下的象, 。这样, 是的一个不变子群,证完。定理三:若和是两个群,并且和同态。那么在这个

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1