ImageVerifierCode 换一换
格式:DOCX , 页数:57 ,大小:488.50KB ,
资源ID:816538      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/816538.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新高考数学理一轮复习细讲精练第九篇统计与统计案例教学设计.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新高考数学理一轮复习细讲精练第九篇统计与统计案例教学设计.docx

1、最新高考数学理一轮复习细讲精练第九篇统计与统计案例教学设计第九篇统计与统计案例A第1讲随机抽样最新考纲1解随机抽样的必要性和重要性2会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.知 识 梳 1简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样(2)最常用的简单随机抽样的方法:抽签法和随机法2系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本(1)编号:先将总体的N个个体编号;(2)分段:确定分段间隔k,对编号进行分段,当(n是样本容量)是整时,

2、取k;(3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l(lk);(4)获取样本:按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(lk),再加k得到第3个个体编号(l2k),依次进行下去,直到获取整个样本3分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样辨 析 感 悟1对简单随机抽样的认识(1)(教材思考问题改编)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一

3、次抽到的可能性最大()(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样()2对系统抽样的解(3)系统抽样适用于元素个较多且分布均衡的总体()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()3对分层抽样的解(5)分层抽样中,每个个体被抽到的可能性与层及分层有关()(6)(2014郑州模拟改编)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取()(7)(2013湖南卷改编)某学校有男、女学生各500名为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体

4、学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样()感悟提升两点提醒一是简单随机抽样(抽签法和随机法)都是从总体中逐个地进行抽取,都是不放回抽样,如(2)二是三种抽样方法在抽样过程中每个个体被抽到的可能性都相等,如(1)、(4)、(5).考点一简单随机抽样【例1】 下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本(2)盒子里共有80个零件,从中选出5个零件进行质量检验在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里(3)从20件玩具中一次性抽取3件进行质量检验(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛解(

5、1)不是简单随机抽样由于被抽取的样本总体的个体是无限的,而不是有限的(2)不是简单随机抽样由于它是放回抽样(3)不是简单随机抽样因为这是“一次性”抽取,而不是“逐个”抽取(4)不是简单随机抽样因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样规律方法 (1)简单随机抽样需满足;抽取的个体有限;逐个抽取;是不放回抽取;是等可能抽取(2)简单随机抽样常有抽签法(适用总体中个体较少的情况)、随机表法(适用于个体较多的情况)【训练1】 下列抽样试验中,适合用抽签法的有()A从某厂生产的5 000件产品中抽取600件进行质量检验B从某厂生产的两箱(每箱18件)产品中抽取6件进行质量

6、检验C从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D从某厂生产的5 000件产品中抽取10件进行质量检验答案B考点二系统抽样【例2】 采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人为()A7 B9 C10 D15解析从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为an930(

7、n1)30n21,由45130n21750,得n,所以n16,17,25,共有2516110人,选C.答案C规律方法 (1)系统抽样适用的条件是总体容量较大,样本容量也较大(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定【训练2】 (1)从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A5,10,15,20,25 B3,13,23,33,43C1,2,3,4,

8、5 D2,4,6,16,32(2)(2014临沂模拟)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A10 B11 C12 D16解析(1)间隔距离为10,故可能编号是3,13,23,33,43.(2)因为29号、42号的号码差为13,所以31316,即另外一个同学的学号是16.答案(1)B(2)D考点三分层抽样【例3】 (2014兰州模拟)某学校三个兴趣小组的学生人分布如下表(每名同学只参加一个小组)(单位:人)篮球组书画组乐器组高一4530a高二151020学校要对这三个小组的活动效果进行

9、抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为_解析因为,所以解得a30.答案30规律方法 进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体之比样本中这两层抽取的个体之比【训练3】 (1)(2012江苏卷)某学校高一、高二、高三年级的学生人之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生(2)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职

10、工为7人,则样本容量为_解析(1)高二年级学生人占总的.样本容量为50,则高二年级抽取:5015(名)学生(2)由题意知,青年职工人中年职工人老年职工人350250150753.由样本中青年职工为7人得样本容量为15.答案(1)15(2)15 1三种抽样方法的联系三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性若样本容量为n,总体的个体为N,则用这三种方法抽样时,每个个体被抽到的概率都是.2各种抽样方法的特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随

11、机性,个体间无固定间距(2)系统抽样的特点:适用于元素个很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样创新突破8抽样方法与概率的交汇问题【典例】 (2012天津卷)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查(1)求应从小学、中学、大学中分别抽取的学校目;(2)若从抽取的6所学校中随机抽取2所学校做进一步据分析,列出所有可能的抽取结果;求抽取的2所学校均为小学的概率突破1:确定分层

12、抽样中的每层所占的比例突破2:用列举法列出所有可能抽取的结果突破3:利用古典概型的计算公式计算解(1)由分层抽样的定义知,从小学中抽取的学校目为63;从中学中抽取的学校目为62;从大学中抽取的学校目为61.则从小学、中学、大学分别抽取的学校目为3,2,1.(2)在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(

13、A4,A6),(A5,A6),共15种从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种所以P(B).反思感悟 分层抽样与概率结合的题目多与实际问题紧密联系,计算量和阅读量都比较大,且一般会有图表,求解时容易造成失误,平时需注意多训练此类型的题目【自主体验】(2014潮州模拟)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人分布)如下表:学历35岁以下3550岁50岁以上本科803020研究生x20y(1)用分层抽样的方法在3550岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成

14、一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x,y的值解(1)用分层抽样的方法在3550岁中抽取一个容量为5的样本,设抽取学历为本科的人为m,解得m3.抽取的样本中有研究生2人,本科生3人,分别记作S1,S2;B1,B2,B3.从中任取2人的所有等可能基本事件共有10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B1,B3),(B2,B3),其中至少有1人的学历为研究生的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1)(S2,B2),(S2,B3),(S1,S2)从中任取2人,至少有1人学历为研究生的概率为.(2)由题意,得,解得N78.3550岁中被抽取的人为78481020,解得x40,y5.即x,y的值分别为40,5.基础巩固题组(建议用时:40分钟)一、选择题1某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1