ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:1.22MB ,
资源ID:7984367      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7984367.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新绍兴市中考数学试题及答案解析word版.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新绍兴市中考数学试题及答案解析word版.docx

1、最新绍兴市中考数学试题及答案解析word版2017年浙江省绍兴市中考数学试卷一、选择题1、-5的相反数是( ) A、 B、5 C、 D、-5【答案】B 【考点】相反数 【解析】【解答】解:-5的相反数是-(-5)=5.故选B.【分析】一个数的相反数是在它的前面添加“-”,并化简. 2、研究表明,可燃冰是一种可替代石油的新型清洁能源。在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为( ) A、151010 B、0.151012 C、1.51011 D、1.51012【答案】C 【考点】科学记数法表示绝对值较大的数

2、【解析】【解答】解:150 000 000 000一共有12位数,那么n=12-1=11,则150 000 000 000= 1.51011 , 故选:C【分析】用科学记数法表示数:把一个数字记为a10n的形式(1|a|丁的方差,所以丁的成绩更稳定些,故选D.【分析】平均数能比较一组数据的平均水平的高低,方差是表示一组数据的波动大小.在这里要选平均数越高为先,再比较方差的大小。6、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为( )A、0.7米 B、1.5

3、米 C、2.2米 D、2.4米【答案】C 【考点】解直角三角形的应用 【解析】【解答】解:设梯子斜靠在右墙时,底端到右墙角的距离为x米,由勾股定理可得梯子的长度2=0.72+2.42=x2+22,可解得x=1.5,则小巷的宽度为0.7+1.5=2.2(米).故选C.【分析】当梯子斜靠在右墙时,梯子的长度并不改变,而且墙与水平面是垂直的,则可运用勾股定理构造方程解出底端到右墙角的距离.再求小巷的宽度. 7、均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是( )A、 B、 C、 D、【答案】D 【考点】函数的图象

4、【解析】【解答】解:从折线图可得,倾斜度: OBOABC,表示水上升的高度的速度:OBOA0)的图象上,AC/x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为_.【答案】(4,1) 【考点】反比例函数的图象,反比例函数的性质 【解析】【解答】解:因为点A(2,2)在函数y= (x0)的图象上,所以k=22=4.则反比函数y= (x0),因为AC/x轴,AC=2,所以C(4,2).在RtABC中,ACB=90,所以B的横坐标与C的横坐标相同,为4,当x=4时,y= =1,则B(4,1).故答案为(4,1).【分析】运用待定系数法求出k的值,而点B也在反比例函数上,所以只要求出B的横坐标或

5、纵坐标代入函数解析式即可解出,由AC/x轴,AC=2,得到C(4,2),不难得到B的横坐标与C的横坐标相同,可得B的横坐标. 14、如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GECD,GFBC,AD=1500m,小敏行走的路线为BAGE,小聪得行走的路线为BADEF.若小敏行走的路程为3100m,则小聪行走的路程为_m.【答案】4600 【考点】全等三角形的判定,正方形的性质 【解析】【解答】解:小敏走的路程为AB+AG+GE=1500+(AG+GE)=3100,则AG+GE=1600m,小聪走的路程为BA+AD+DE+EF=3000+(DE+EF).连接CG,在

6、正方形ABCD中,ADG=CDG=45,AD=CD,在ADG和CDG中,所以ADGCDG,所以AG=CG.又因为GECD,GFBC,BCD=90,所以四边形GECF是矩形,所以CG=EF.又因为CDG=45,所以DE=GE,所以小聪走的路程为BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).故答案为4600.【分析】从两人的行走路线得到他们所走的路程和,可以得到AG+GE=1600m,小聪走的路程为BA+AD+DE+EF=3000+(DE+EF),即要求出DE+EF,通一系列的证明即可得到DE=GE,EF=CG=AG. 15、以RtABC的锐角顶点A为圆心,

7、适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若ADB=60,点D到AC的距离为2,则AB的长为_. 【答案】2 【考点】作图尺规作图的定义 【解析】【解答】解:根据题中的语句作图可得下面的图,过点D作DEAC于E,由尺规作图的方法可得AD为BAC的角平分线,因为ADB=60,所以B=90,由角平分线的性质可得BD=DE=2,在RtABD中,AB=BDtanADB=2 .故答案为2 .【分析】由尺规作图-角平分线的作法可得AD为BAC的角平分线,由角平分线的性质可得BD=2,又已知ADB即可求出AB的值.

8、16、如图,AOB=45,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是_.【答案】x=0或x= 或4x4 【考点】相交两圆的性质 【解析】【解答】解:以MN为底边时,可作MN的垂直平分线,与OB的必有一个交点P1 , 且MN=4,以M为圆心MN为半径画圆,以N为圆心MN为半径画圆,如下图,当M与点O重合时,即x=0时,除了P1 , 当MN=MP,即为P3;当NP=MN时,即为P2;只有3个点P;当0x0时,MNON,则MN=NP不存在,除了P1外,当MP=MN=4时,过点M作MDOB于D,当OM=MP=4时,圆M与O

9、B刚好交OB两点P2和P3;当MD=MN=4时,圆M与OB只有一个交点,此时OM= MD=4 ,故4x4 .与OB有两个交点P2和P3 , 故答案为x=0或x= 或4x4 .【分析】以M,N,P三点为等腰三角形的三顶点,则可得有MP=MN=4,NP=MN=4,PM=PN这三种情况,而PM=PN这一种情况始终存在;当MP=MN时可作以M为圆心MN为半径的圆,查看与OB的交点的个数;以N为圆心MN为半径的圆,查看与OB的交点的个数;则可分为当x=0时,符合条件;当0x18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米? 300元以下 9 18%【答案】(1)解:观察

10、折线图可得当横坐标为18时的点的纵坐标为45,即应交水费为45元.(2)解:设当x18时,y关于x的函数表达式为y=kx+b,将(18,45)和(28,75)代入可得解得 ,则当x18时,y关于x的函数表达式为y=3x-9,当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米. 【考点】一次函数的应用 【解析】【分析】(1)从图中即可得到横坐标为18时的点的纵坐标;(2)运用待定系数法,设y=kx+b,代入两个点的坐标求出k和b,并将y=81时代入求出x的值即可. 然而影响我们大学生消费的最主要的因素是我们的生活费还是有限,故也限制了我们一定的购买能力。因此在价格方面要做适

11、当考虑:我们所推出的手工艺制品的价位绝大部分都是在50元以下。一定会适合我们的学生朋友。19、为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.(1)本次接受问卷调查的同学有多少人?补全条形统计图. (二)DIY手工艺品的“热卖化”(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数. 【答案】(1)解:本次接受问卷调查的同学有4025%=160(人);选D的同学有160-20-40-60-10=30(人),补全条形统计图如下.(2)

12、解: (人). 【考点】扇形统计图,条形统计图 【解析】【分析】(1)从条形统计图中,可以得到选B的人数是40,从扇形统计图中可得选B的人数占25%,即可求得;需要求出选D的人数,再补条形统计图.(2)锻炼时间在3小时以内的,即包括选A、B、C的人数;要求出选A、B、C占调查人数的百分比,再乘以七年级总人数即可求出. (二)大学生对DIY手工艺品消费态度分析20、如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.1m。参考数据:tan200.36,tan180.32)(1)求

13、BCD的度数. 根据调查资料分析:大学生的消费购买能力还是有限的,为此DIY手工艺品的消费不能高,这才有广阔的市场。(2)求教学楼的高BD 当然,在竞争日益激烈的现代社会中,创业是件相当困难的事。我们认为,在实行我们的创业计划之前,我们首先要了解竞争对手,吸取别人的经验教训,制订相应竞争的策略。我相信只要我们的小店有自己独到的风格,价格优惠,服务热情周到,就一定能取得大多女孩的信任和喜爱。【答案】(1)解:过点C作CDBD于点E,则DCE=18,BCE=20,所以BCD=DCE+BCE=18+20=38.(2)解:由已知得CE=AB=30(m),在RtCBE中,BE=CEtan20300.36

14、=10.80(m),在RtCDE中,DE=CEtan18300.32=9.60(m),教学楼的高BD=BE+DE=10.80+9.6020.4(m).答:教学楼的高为20.4m. 【考点】解直角三角形的应用-仰角俯角问题 【解析】【分析】(1)C观测D的仰角应为CD与水平面的较小的夹角,即DCE;C观测B的俯角应为CB与水平线的较小的夹角,即为BCE,不难得出BCD=DCE+BCE;(2)易得CE=AB,则由直角三角形的锐角函数值即可分别求得BE和DE,求和即可. 经常光顾 偶尔会去 不会去21、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长

15、为为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大? (2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。小敏说:“只要饲养室长比(1)中的长多2m就行了.” 【答案】(1)解:因为 ,所以当x=25时,占地面积y最大,即当饲养室长为25m时,占地面积最大.(2)解:因为 ,所以当x=26时,占地面积y最大,即饲养室长为26m时,占地面积最大.因为26-25=12,所以小敏的说法不正确. 【考点】一元二次方程的应用 【解析】【分析】(1)根据矩形的面积=长高,已知长为x,则宽为 ,代入求出y关于x的函数解析式,配成

16、二次函数的顶点式,即可求出x的值时,y有最大值;(2)长虽然不变,但长用料用了(x-2)m,所以宽变成了 ,由(1)同理,代入求出y关于x的函数解析式,配成二次函数的顶点式,即可求出x的值时,y有最大值. 22、定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,ABC=90,若AB=CD=1,AB/CD,求对角线BD的长.若ACBD,求证:AD=CD. (2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求A

17、E的长. 【答案】(1)解:因为AB=CD=1,AB/CD,所以四边形ABCD是平行四边形.又因为AB=BC,所以ABCD是菱形.又因为ABC=90度,所以菱形ABCD是正方形.所以BD= .如图1,连结AC,BD,因为AB=BC,ACBD,所以ABD=CBD,又因为BD=BD,所以ABDCBD,所以AD=CD.(2)解:若EF与BC垂直,则AEEF,BFEF,所以四边形ABFE不是等腰直角四边形,不符合条件;若EF与BC不垂直,当AE=AB时,如图2,此时四边形ABFE是等腰直角四边形.所以AE=AB=5.当BF=AB时,如图3,此时四边形ABFE是等腰直角四边形.所以BF=AB=5,因为D

18、E/BF,所以PEDPFB,所以DE:BF=PD:PB=1:2,所以AE=9-2.5=6.5.综上所述,AE的长为5或6.5.【考点】平行四边形的判定 【解析】【分析】(1)由AB=CD=1,AB/CD,根据“有一组对边平行且相等的四边形是平行四边形”可得四边形ABCD是平行四边形.由邻边相等AB=BC,有一直角ABC=90度,所以菱形ABCD是正方形.则BD= ;连结AC,BD,由AB=BC,ACBD,可知四边形ABCD是一个筝形,则只要证明ABDCBD,即可得到AD=CD.(2)分类讨论:若EF与BC垂直,明示有AEEF,BFEF,即EF与两条邻边不相等;由A=ABC=90,可分类讨论AB

19、=AE时,AB=BF时去解答. 23、已知ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设BAD=,CDE=.(1)如图,若点D在线段BC上,点E在线段AC上.如果ABC=60,ADE=70,那么=_,=_.求,之间的关系式._ (2)是否存在不同于以上中的,之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由. 【答案】(1)20;10;=2(2)解:如图,点E在CA延长线上,点D在线段BC上,设ABC=x,ADE=y,则ACB=x,AED=y,在ABD中,x+=-y,在DEC中,x+y+=180,所以=2-180.注:求出其它关系式,相应给分

20、,如点E在CA的延长线上,点D在CB的延长线上,可得=180-2.【考点】三角形的外角性质 【解析】【解答】解:(1)因为AD=AE,所以AED=ADE=70,DAE=40,又因为AB=AC,ABC=60,所以BAC=C=ABC=60,所以=BAC-DAE=60-40=20,=AED-C=70-60=10;解:如图,设ABC=x,ADE=y,则ACB=x,AED=y,在DEC中,y=+x,在ABD中,+x=y+,所以=2.【分析】(1)在ADE中,由AD=AE,ADE=70,不难求出AED和DAE;由AB=AC,ABC=60,可得BAC=C=ABC=60,则=BAC-DAE,再根据三角形外角的性质可得=AED-C;求解时可借助设未知数的方法,然后再把未知数消去的方法,可设ABC=x,ADE=y;(2)有很多种不同的情况,做法与(1)中的类似,可求这种情况:点E在CA延长线上,点D在线段BC上. 24、如图1,已知ABCD,AB/x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1