ImageVerifierCode 换一换
格式:DOCX , 页数:33 ,大小:55.75KB ,
资源ID:7506415      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7506415.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(小学六年级奥数题集锦全面.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

小学六年级奥数题集锦全面.docx

1、小学六年级奥数题集锦全面小学六年级奥数题集锦(全面)搬运一个仓库的货物;甲需要10小时;乙需要12小时;丙需要15小时.有同样的仓库A和B;甲在A仓库、乙在B仓库同时开始搬运货物;丙开始帮助甲搬运;中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2;所需时间是 答:丙帮助甲搬运3小时;帮助乙搬运5小时解本题的关键;是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化;设搬运一个仓库全部工作量为 60.甲每小时搬运 6;乙每小时搬运 5;丙每小时搬运4三人共同搬完;需要60 2(6+ 5+ 4)=

2、 8(小时)甲需丙帮助搬运(60- 6 8) 4= 3(小时)乙需丙帮助搬运(60- 5 8)4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案 甲乙丙3人8天完成 :5/6-1/3=1/2 甲乙丙3人每天完成 :1/28=1/16; 甲乙丙3人4天完成 :1/164=1/4 则甲做一天后乙做2天要做 :1/3-1/4=1/12 那么乙一天做 :1/12-1/723/2=1/48 则丙一天做 :1/16-1/72-1/

3、48=1/36 则余下的由丙做要 :1-5/61/36=6天 答:还需要6天某书店老板去图书批发市场购买某种图书;第一次购书用100元;按该书定价2.8元出售;很快售完。第二次购书时;每本的批发价比第一次增多了0.5元;用去150元;所购数量比第一次多10本;当这批书售出4/5时出现滞销;便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱;若赔;赔多少;若赚;赚多少答案 (100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助育才小学原来体育达标人数与未达标人数

4、比是3:5;后来又有60名同学达标;这时达标人数是未达标人数的9/11;育才小学共有学生多少人?答案 原来达标人数占总人数的3(35)3/8现在达标人数占总人数的9/11(19/11)9/20育才小学共有学生60(9/203/8)800人甲乙丙三个村合修一条水渠;修完后;甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力;后来因为丙村抽不出劳力;经协商;丙村应抽出的劳力由甲乙两村分担;丙村付给甲乙两村工钱1350元;结果;甲村共派出60人;乙村共派出40人;问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+4

5、0)20=5人甲村需要的人数:85=40人;多出劳力人数:60-40=20人乙村需要的人数:75=35人;多出劳力人数:40-35=5人丙村需要的人数:55=25人 或 20+5=25人每人应得的钱数:135025=54元甲村应得的工钱:5420=1080元乙村应得的工钱: 545=270元某人到商店买红蓝两种钢笔;红钢笔定价5元;蓝钢笔定价9元;由于购买量较多;商店给予优惠;红钢笔八五折;蓝钢笔八折;结果此人付的钱比原来节省的18%;已知他买了蓝钢笔30枝;那么。他买了几支红钢笔?答案红笔买了x支。(5x+309)(1-18%)=5x0.85+3090.8x=36.十字交叉法;需要算总钱数比

6、甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍;我的钱是现有的1/3;丙的钱不变;我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?答案 乙的话表明:甲钱5倍与乙钱2/3一样多所以;乙钱是3*5=15的倍数;甲钱是偶数丙钱不足30;所以;甲乙钱和多于70;而乙多于甲的6倍;所以;乙多于60设乙=75;甲=75*2/35=10,丙=100-10-75=15设乙=90;甲=90*2/35=12,90+12100,不行所以;三人原来:甲10元;乙75元;丙15元两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛;到

7、什么1支剩余部分正好是另一支剩余的2倍?答案 两支蜡烛分别设为A蜡烛和B蜡烛;其中A蜡烛是那支烧得快点的A蜡烛;两小时烧完;那么每小时燃烧1/2B蜡烛;三小时烧完;那么每小时燃烧1/3设过了x小时以后;B蜡烛剩余的部分是A的两倍2(1x/2)=1x/3解得x=1.5由于是6点半开始的;所以到8点的时候刚刚好学校组织春游;同学们下午1点从学校出发;走了一段平路;爬了一座山后按原路返回;下午七点回到学校。已知他们的步行速度平路4Km/小时;爬山3Km/小时;下山为6Km/小时;返回时间为2.5时。问:他们一共行了多少路答案1设走的平路是X公里 山路是Y公里因为1点到七点共用时间6小时 返回为2.5

8、小时 则去时用3.5小时Y/3-Y/6=1小时Y=6公里去时共用3.5小时 则X/4+Y/3=3.5 X=6所以总路程为2(6+6)=24km答案2解:春游共用时:7:001:006(小时)上山用时:62.53.5(小时)上山多用:3.52.51(小时)山路:(63)1(36)6(千米)下山用时:661(小时)平路:(2.51)46(千米)单程走路:6612(千米)共走路:12224(千米)答:他们共走24千米。工程问题1甲乙两个水管单独开;注满一池水;分别需要20小时;16小时.丙水管单独开;排一池水要10小时;若水池没水;同时打开甲乙两水管;5小时后;再打开排水管丙;问水池注满还是要多少小

9、时?解:1/20+1/169/80表示甲乙的工作效率9/80545/80表示5小时后进水量1-45/8035/80表示还要的进水量35/80(9/80-1/10)35表示还要35小时注满答:5小时后还要35小时就能将水池注满。2修一条水渠;单独修;甲队需要20天完成;乙队需要30天完成。如果两队合作;由于彼此施工有影响;他们的工作效率就要降低;甲队的工作效率是原来的五分之四;乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠;且要求两队合作的天数尽可能少;那么两队要合作几天?解:由题意得;甲的工效为1/20;乙的工效为1/30;甲乙的合作工效为1/20*4/5+1/30*9/107/1

10、00;可知甲乙合作工效甲的工效乙的工效。又因为;要求“两队合作的天数尽可能少”;所以应该让做的快的甲多做;16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天;则甲独做时间为(16-x)天1/20*(16-x)+7/100*x1x10答:甲乙最短合作10天3一件工作;甲、乙合做需4小时完成;乙、丙合做需5小时完成。现在先请甲、丙合做2小时后;余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?解:由题意知;1/4表示甲乙合作1小时的工作量;1/5表示乙丙合作1小时的工作量(1/4+1/5)29/10表示甲做了2小时、乙做了4小时、丙做了2小时的

11、工作量。根据“甲、丙合做2小时后;余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。所以19/101/10表示乙做6-42小时的工作量。1/1021/20表示乙的工作效率。11/2020小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。4一项工程;第一天甲做;第二天乙做;第三天甲做;第四天乙做;这样交替轮流做;那么恰好用整数天完工;如果第一天乙做;第二天甲做;第三天乙做;第四天甲做;这样交替轮流做;那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成;甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+1/甲11/乙+

12、1/甲+1/乙+1/甲+1/乙+1/甲0.51(1/甲表示甲的工作效率、1/乙表示乙的工作效率;最后结束必须如上所示;否则第二种做法就不比第一种多0.5天)1/甲1/乙+1/甲0.5(因为前面的工作量都相等)得到1/甲1/乙2又因为1/乙1/17所以1/甲2/17;甲等于1728.5天5师徒俩人加工同样多的零件。当师傅完成了1/2时;徒弟完成了120个。当师傅完成了任务时;徒弟完成了4/5这批零件共有多少个?答案为300个120(4/52)300个可以这样想:师傅第一次完成了1/2;第二次也是1/2;两次一共全部完工;那么徒弟第二次后共完成了4/5;可以推算出第一次完成了4/5的一半是2/5;

13、刚好是120个。6一批树苗;如果分给男女生栽;平均每人栽6棵;如果单份给女生栽;平均每人栽10棵。单份给男生栽;平均每人栽几棵?答案是15棵算式:1(1/6-1/10)15棵7一个池上装有3根水管。甲管为进水管;乙管为出水管;20分钟可将满池水放完;丙管也是出水管;30分钟可将满池水放完。现在先打开甲管;当水池水刚溢出时;打开乙,丙两管用了18分钟放完;当打开甲管注满水是;再打开乙管;而不开丙管;多少分钟将水放完?答案45分钟。1(1/20+1/30)12 表示乙丙合作将满池水放完需要的分钟数。1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后;还多放了6分钟的水;也就是甲

14、18分钟进的水。1/2181/36 表示甲每分钟进水最后就是1(1/20-1/36)45分钟。8某工程队需要在规定日期内完成;若由甲队去做;恰好如期完成;若乙队去做;要超过规定日期三天完成;若先由甲乙合作二天;再由乙队单独做;恰好如期完成;问规定日期为几天?答案为6天解:由“若乙队去做;要超过规定日期三天完成;若先由甲乙合作二天;再由乙队单独做;恰好如期完成;”可知:乙做3天的工作量甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3(3-2)26天;就是甲的时间;也就是规定日期方程方法:1/x+1/(x+2)2+1/(x+2

15、)(x-2)1解得x69两根同样长的蜡烛;点完一根粗蜡烛要2小时;而点完一根细蜡烛要1小时;一天晚上停电;小芳同时点燃了这两根蜡烛看书;若干分钟后来点了;小芳将两支蜡烛同时熄灭;发现粗蜡烛的长是细蜡烛的2倍;问:停电多少分钟?答案为40分钟。解:设停电了x分钟根据题意列方程1-1/120*x(1-1/60*x)*2解得x40二鸡兔同笼问题1鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100400;400-0400 假设都是兔子;一共有400只兔子的脚;那么鸡的脚为0只;鸡的脚比兔子的脚少400只。400-28372 实际鸡的脚数比兔子的脚数只少28只;相差372只;

16、这是为什么?4+26 这是因为只要将一只兔子换成一只鸡;兔子的总脚数就会减少4只(从400只变为396只);鸡的总脚数就会增加2只(从0只到2只);它们的相差数就会少4+26只(也就是原来的相差数是400-0400;现在的相差数为396-2394;相差数少了400-3946)372662 表示鸡的只数;也就是说因为假设中的100只兔子中有62只改为了鸡;所以脚的相差数从400改为28;一共改了372只100-6238表示兔的只数三数字数位问题1把1至2005这2005个自然数依次写下来得到一个多位数123456789.2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果

17、各个数位上的数字之和能被9整除;那么这个数也能被9整除;如果各个位数字之和不能被9整除;那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:11999这些数的个位上的数字之和可以被9整除1019;20299099这些数中十位上的数字都出现了10次;那么十位上的数字之和就是10+20+30+90=450 它有能被9整除同样的道理;100900 百位上的数字之和为4500 同样被9整除也就是说1999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:10001999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这

18、里千位上的“1”还没考虑;同时这里我们少200020012002200320042005从10001999千位上一共999个“1”的和是999;也能整除;200020012002200320042005的各位数字之和是27;也刚好整除。最后答案为余数为0。2A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值.解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的 1 不会变了;只需求后面的最小值;此时 (A-B)/(A+B) 最大。对于 B / (A+B) 取最小时;(A+B)/B 取最大;问题转化为求 (A+B)/B 的最

19、大值。(A+B)/B = 1 + A/B ;最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是: 98 / 1003已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/168A+4B+C/166.4;所以8A+4B+C102.4;由于A、B、C为非0自然数;因此8A+4B+C为一个整数;可能是102;也有可能是103。当是102时;102/166.375当是103时;103/166.43754一个三位数的各位数字 之和是17.其中十位数字

20、比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a;则十位为a+1;百位为16-2a根据题意列方程100a+10a+16-2a100(16-2a)-10a-a198解得a6;则a+17 16-2a4答:原数为476。5一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a;则该三位数为300+a7a+24300+aa24答:该两位数为24。6把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多

21、少?答案为121解:设原两位数为10a+b;则新两位数为10b+a它们的和就是10a+b+10b+a11(a+b)因为这个和是一个平方数;可以确定a+b11因此这个和就是1111121答:它们的和为121。7一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2;则新六位数为2abcde(字母上无法加横线;请将整个看成一个六位数)再设abcde(五位数)为x;则原六位数就是10x+2;新六位数就是200000+x根据题意得;(200000+x)310x+2解得x85714所以原数就是857142答:原数为8571428有一个四位数,

22、个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd;则新数为cdab;且d+b12;a+c9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b12;可知d、b可能是3、9;4、8;5、7;6、6。再观察竖式中的个位;便可以知道只有当d3;b9;或d8;b4时成立。先取d3;b9代入竖式的百位;可以确定十位上有进位。根据a+c9;可知a、c可能是1、8;2、7;3、6;4、5。再观察竖式中的十位;便可知

23、只有当c6;a3时成立。再代入竖式的千位;成立。得到:abcd3963再取d8;b4代入竖式的十位;无法找到竖式的十位合适的数;所以不成立。9有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab10a+b9b+610a+b5(a+b)+3化简得到一样:5a+4b3由于a、b均为一位整数得到a3或7;b3或8原数为33或78均可以10如果现在是上午的10点21分,那么在经过28799.99(一共有20个9)分钟之后的时间将是几点几分?答案是10:20解:(287999(20个9)+1)/60/24

24、整除;表示正好过了整数天;时间仍然还是10:21;因为事先计算时加了1分钟;所以现在时间是10:20四排列组合问题1有五对夫妇围成一圈;使每一对夫妇的夫妻二人动相邻的排法有( )A 768种 B 32种 C 24种 D 2的10次方中解:根据乘法原理;分两步:第一步是把5对夫妻看作5个整体;进行排列有54321120种不同的排法;但是因为是围成一个首尾相接的圈;就会产生5个5个重复;因此实际排法只有120524种。第二步每一对夫妻之间又可以相互换位置;也就是说每一对夫妻均有2种排法;总共又2222232种综合两步;就有2432768种。2 若把英语单词hello的字母写错了,则可能出现的错误共

25、有 ( )A 119种 B 36种 C 59种 D 48种解:5全排列5*4*3*2*1=120有两个l所以120/2=60原来有一种正确的所以60-1=59五容斥原理问题1 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25 B 32,25 C32,15 D 43,11解:根据容斥原理最小值68+43-10011最大值就是含铁的有43种2在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第

26、一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A;5 B;6 C;7 D;8解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题;只答第2题;只答第3题;只答第1、2题;只答第1、3题;只答2、3题;答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a12325由(2)知:a2+a23(a3+ a23)2由(3)知:a12+a13+a123a11由(4)知:a1a2+a3再由得a23a2a32再由得a1

27、2+a13+a123a2+a31然后将代入中;整理得到a24+a326由于a2、a3均表示人数;可以求出它们的整数解:当a26、5、4、3、2、1时;a32、6、10、14、18、22又根据a23a2a32可知:a2a3因此;符合条件的只有a26;a32。然后可以推出a18;a12+a13+a1237;a232;总人数8+6+2+7+225;检验所有条件均符。故只解出第二题的学生人数a26人。3一次考试共有5道试题。做对第1、2、3、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格;那么这次考试的合格率至少是多少?答案:及格率至少为71。假设一

28、共有100人考试100-955100-8020100-7921100-7426100-85155+20+21+26+1587(表示5题中有1题做错的最多人数)87329(表示5题中有3题做错的最多人数;即不及格的人数最多为29人)100-2971(及格的最少人数;其实都是全对的)及格率至少为71六抽屉原理、奇偶性问题1一只布袋中装有大小相同但颜色不同的手套;颜色有黑、红、蓝、黄四种;问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉;把手套看成是元素;要保证有一副同色的;就是1个抽屉里至少有2只手套;根据抽屉原理;最少要摸出5只手套。这时拿出1副同色的后4个抽屉中

29、还剩3只手套。再根据抽屉原理;只要再摸出2只手套;又能保证有一副手套是同色的;以此类推。把四种颜色看做4个抽屉;要保证有3副同色的;先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后;4个抽屉中还剩下3只手套。根据抽屉原理;只要再摸出2只手套;又能保证有1副是同色的。以此类推;要保证有3副同色的;共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套;才能保证有3副同色的。2有四种颜色的积木若干;每人可任取1-2件;至少有几个人去取;才能保证有3人能取得完全一样?答案为21解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3某盒子内装50只球;其中10只是红色;10只是绿色;10只是黄色;10只是蓝色;其余是白球和黑球;为了确保取出的球中至少包含有7只同色的球;问:最少必须从袋中取出多少只球?解:需要分情况讨论;因为无法确定其中黑球与白球的个数。当黑球或白球其中没有大于或等于7个的;那么就是:6*4+10+1=35(个)如果黑球或白球其中有等于7个的;那么就是:6*5+3+134(个)如果黑球或白球其中有等于8个的;那么就是:6*5+2+133如果黑球或白球其中有等于9个的;那么

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1