ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:108.72KB ,
资源ID:7496342      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7496342.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(单片机STM32学习笔记.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

单片机STM32学习笔记.docx

1、单片机STM32学习笔记推挽输出与开漏输出的区别推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内). 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现“线与”需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。输出既可以向负载灌电流,也可以从负载抽取电流。

2、 问题:很多芯片的供电电压不一样,有3.3v和5.0v,需要把几种IC的不同口连接在一起,是不是直接连接就可以了?实际上系统是应用在I2C上面。 简答: 1、部分3.3V器件有5V兼容性,可以利用这种容性直接连接2、应用电压转换器件,如TPS76733就是5V输入,转换成3.3V、1A输出。开漏电路特点及应用在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻

3、。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。如图1所示: 组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。如图1。2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。3. 可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出

4、高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能 力。应用中需注意:1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度 。阻值

5、越大,速度越低功耗越小。反之亦然。Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的pushpull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,pushpull的高低电平由IC的电源低定,不能简单的做逻辑操作等。pushpull是现在CMOS电路里面用得最多的输出级设计方式。 at91rm9200 GPIO 模拟I2C接口时注意!判断上拉输入和下拉输入当一个按键按下的时候,对应的引脚输入数据是0或1是不确定的,还要看外部电路的组成是上拉还是下拉,当外部电路时上拉的时候,即外部接正的时候,读入的

6、数据是1;当外部电路是下拉的时候,读入的数据是0.上拉例子:无键按下的时候是1,有键按下是0下拉例子:无键按下的时候是0,有键按下时是1 STM32学习-时钟在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。、HSI是高速内部时钟,RC振荡器,频率为8MHz。、 HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz16MHz。、LSI是低速内部时钟,RC振荡器,频率为40kHz。、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为 216倍,但

7、是其输出频率最大不得超过72MHz。其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL1:0来选择。STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或

8、者系统时钟。系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:、送给AHB总线、内核、内存和DMA使用的HCLK时钟。、通过8分频后送给Cortex的系统定时器时钟。、直接送给Cortex的空闲运行时钟FCLK。、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路

9、送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应

10、的时钟。需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PAPE)、第二功能IO口。下图为

11、STM32芯片的时钟结构图。从图中可以直观的看出STM32的时钟封装。STM32资料一flash: 芯片内部存储器flash操作函数我的理解对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,024MHz时,取Latency=0;2448MHz时,取Latency=1;4872MHz时,取Latency=2。所有程序中必须的用法:FLASH_SetLatency(FLASH_Latency_2);位置:RCC初始化子函数里面,时钟起振之后。2,开启FLASH预读缓

12、冲功能,加速FLASH的读取。所有程序中必须的用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);位置:RCC初始化子函数里面,时钟起振之后。3、lib:调试所有外设初始化的函数。我的理解不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。基础应用1,只有一个函数debug。所有程序中必须的。用法: #ifdef DEBUG debug();#endif位置:main函数开头,声明变量之后。4、nvic:系统中断管理。我的理解管理系统内部的中断,负责打开和关闭中断。

13、基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。用法: void NVIC_Configuration(void)NVIC_InitTypeDef NVIC_InitStructure; /中断管理恢复默认参数#ifdef VECT_TAB_RAM /如果C/C+ CompilerPreprocessorDefined symbols中的定义了VECT_TAB_RAM(见程序库更改内容的表格)NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); /则在RAM调试#else /如果没有定义VECT_TAB_RAMN

14、VIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);/则在Flash里调试#endif /结束判断语句/以下为中断的开启过程,不是所有程序必须的。NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);/设置NVIC优先级分组,方式。/注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定,NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会

15、打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; /开中断,中断名称见函数库NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; /抢占优先级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; /响应优先级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; /启动此通道的中断NVIC_Init(&NVIC_InitStructure); /

16、中断初始化5、 rcc:单片机时钟管理。我的理解管理外部、内部和外设的时钟,设置、打开和关闭这些时钟。基础应用1:时钟的初始化函数过程用法:void RCC_Configuration(void) /时钟初始化函数 ErrorStatus HSEStartUpStatus; /等待时钟的稳定 RCC_DeInit(); /时钟管理重置 RCC_HSEConfig(RCC_HSE_ON); /打开外部晶振 HSEStartUpStatus = RCC_WaitForHSEStartUp(); /等待外部晶振就绪if (HSEStartUpStatus = SUCCESS) FLASH_Prefe

17、tchBufferCmd(FLASH_PrefetchBuffer_Enable);/flash读取缓冲,加速FLASH_SetLatency(FLASH_Latency_2); /flash操作的延时RCC_HCLKConfig(RCC_SYSCLK_Div1); /AHB使用系统时钟RCC_PCLK2Config(RCC_HCLK_Div2); /APB2(高速)为HCLK的一半RCC_PCLK1Config(RCC_HCLK_Div2); /APB1(低速)为HCLK的一半/注:AHB主要负责外部存储器时钟。APB2负责AD,I/O,高级TIM,串口1。APB1负责DA,USB,SPI,

18、I2C,CAN,串口2345,普通TIM。RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /PLLCLK = 8MHz * 9 = 72 MHzRCC_PLLCmd(ENABLE); /启动PLLwhile (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) = RESET) /等待PLL启动RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /将PLL设置为系统时钟源while (RCC_GetSYSCLKSource() != 0x08) /等待系统时钟源的启动 RCC_AHBP

19、eriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); /启动AHP设备RCC_APB2PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE);/启动ABP2设备RCC_APB1PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); /启动ABP1设备6、 exti:外部设备中断函数我的理解外部设备通过引脚给出的硬件中断,也可以产生软件中断,19个上升、下降或都触发。EXTI0EXTI15连接到管脚,EXTI线16连接到PVD(VDD监视),EXTI线17连接到RTC(闹钟),EXTI线18连接到

20、USB(唤醒)。基础应用1,设定外部中断初始化函数。按需求,不是必须代码。用法: void EXTI_Configuration(void)EXTI_InitTypeDef EXTI_InitStructure; /外部设备中断恢复默认参数EXTI_InitStructure.EXTI_Line = 通道1|通道2; /设定所需产生外部中断的通道,一共19个。EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; /产生中断EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; /上升下降沿

21、都触发EXTI_InitStructure.EXTI_LineCmd = ENABLE; /启动中断的接收EXTI_Init(&EXTI_InitStructure); /外部设备中断启动7、 dma:通过总线而越过CPU读取外设数据我的理解通过DMA应用可以加速单片机外设、存储器之间的数据传输,并在传输期间不影响CPU进行其他事情。这对于入门开发基本功能来说没有太大必要,这个内容先行跳过。8、 systic:系统定时器我的理解可以输出和利用系统时钟的计数、状态。基础应用1,精确计时的延时子函数。推荐使用的代码。用法:static vu32 TimingDelay; /全局变量声明void S

22、ysTick_Config(void) /systick初始化函数SysTick_CounterCmd(SysTick_Counter_Disable); /停止系统定时器SysTick_ITConfig(DISABLE); /停止systick中断SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); /systick使用HCLK作为时钟源,频率值除以8。SysTick_SetReload(9000); /重置时间1毫秒(以72MHz为基础计算)SysTick_ITConfig(ENABLE); /开启systic中断void Delay

23、(u32 nTime) /延迟一毫秒的函数SysTick_CounterCmd(SysTick_Counter_Enable); /systic开始计时 TimingDelay = nTime; /计时长度赋值给递减变量while(TimingDelay != 0); /检测是否计时完成SysTick_CounterCmd(SysTick_Counter_Disable); /关闭计数器SysTick_CounterCmd(SysTick_Counter_Clear); /清除计数值void TimingDelay_Decrement(void) /递减变量函数,函数名由“stm32f10x_

24、it.c”中的中断响应函数定义好了。if (TimingDelay != 0x00) /检测计数变量是否达到0 TimingDelay-; /计数变量递减注:建议熟练后使用,所涉及知识和设备太多,新手出错的可能性比较大。新手可用简化的延时函数代替:void Delay(vu32 nCount) /简单延时函数 for(; nCount != 0; nCount-); /循环变量递减计数当延时较长,又不需要精确计时的时候可以使用嵌套循环:void Delay(vu32 nCount) /简单的长时间延时函数int i; /声明内部递减变量 for(; nCount != 0; nCount-)

25、/递减变量计数for (i=0; i0xffff; i+) /内部循环递减变量计数9、 gpio:I/O设置函数我的理解所有输入输出管脚模式设置,可以是上下拉、浮空、开漏、模拟、推挽模式,频率特性为2M,10M,50M。也可以向该管脚直接写入数据和读取数据。基础应用1,gpio初始化函数。所有程序必须。用法:void GPIO_Configuration(void)GPIO_InitTypeDef GPIO_InitStructure; /GPIO状态恢复默认参数GPIO_InitStructure.GPIO_Pin = GPIO_Pin_标号 | GPIO_Pin_标号 ; /管脚位置定义,

26、标号可以是NONE、ALL、0至15。GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;/输出速度2MHzGPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; /模拟输入模式GPIO_Init(GPIOC, &GPIO_InitStructure); /C组GPIO初始化/注:以上四行代码为一组,每组GPIO属性必须相同,默认的GPIO参数为:ALL,2MHz,FLATING。如果其中任意一行与前一组相应设置相同,那么那一行可以省略,由此推论如果前面已经将此行参数设定为默认参数(包括使用GPIO_InitTyp

27、eDef GPIO_InitStructure代码),本组应用也是默认参数的话,那么也可以省略。以下重复这个过程直到所有应用的管脚全部被定义完毕。基础应用2,向管脚写入0或1用法:GPIO_WriteBit(GPIOB, GPIO_Pin_2, (BitAction)0x01); /写入1基础应用3,从管脚读入0或1用法:GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6)sw笨笨的STM32笔记之七:让它跑起来,基本硬件功能的建立 0、实验之前的准备a)接通串口转接器b)下载IO与串口的原厂程序,编译通过保证调试所需硬件正常1、flash,lib,nvic,rcc

28、和GPIO,基础程序库编写a)这几个库函数中有一些函数是关于芯片的初始化的,每个程序中必用。为保障程序品质,初学阶段要求严格遵守官方习惯。注意,官方程序库例程中有个platform_config.h文件,是专门用来指定同类外设中第几号外设被使用,就是说在main.c里面所有外设序号用x代替,比如USARTx,程序会到这个头文件中去查找到底是用那些外设,初学的时候参考例程别被这个所迷惑住。b)全部必用代码取自库函数所带例程,并增加逐句注释。c)习惯顺序Lib(debug),RCC(包括Flash优化),NVIC,GPIOd)必用模块初始化函数的定义:void RCC_Configuration(void);/定义时钟初始化函数void GPIO_Configuration(void);/定义管脚初始化函数void NVIC_Configuration(void);/定义中断管理初始化函数void Delay(vu32 nCount);/

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1