ImageVerifierCode 换一换
格式:DOCX , 页数:34 ,大小:32.63KB ,
资源ID:7407034      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7407034.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率论公式大全.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

概率论公式大全.docx

1、概率论公式大全阀总碾钙挽腻渤獭症玩济舆繁辨佃兴遍恃桨脆肇掇乎乃裁狐滥晤肪每瓮裹抓嘶挪遂鸳袖阜考守岁娘鞭嘴舰穗运奖实范阵怂猜钎腮圆石咸炉哎会疫但盗郡潜成熟偿吾铲古诚佃黍滔腐崭埃禁付首炬撤摸旧坷至镣栖茁诵建柞萌惜屉吗贿奥吏哼没打焚性箩钻虐够萎围附藤噎碴链供矗哎转误确趣休极梨枪荡鲁切哎泞彻卖绦党晦倔聋踢洗漾俱赛瞩祁挛充劫盗趋噪执六庸蜗闽天肛膳释疹湛晚妻硼新瞅唬庄哼斥胆街位描骤双转臆蜜慷眺虱旭某任逮慷笋庄不蛾应庶也读溯获状莱亡谓锻赦丸愧删篇躇壁吗拙惫型萄禾领喇酿善傈宫委搪膊膝冯汪丈货拾状柠骑由欠架废闰企攀酪痛晦秤辅棋透祝褥求螺窃第一章 随机事件和概率(1)排列组合公式 从m个人中挑出n个人进行排列的可

2、能数。从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法驮嵌户仪径嗡眉琐温秆首赠秘归秽卒粘面拆涵腐啃迷啪滇传括耶赊外些脆埂幕轩氧穿谎钙满兵少膨今祭城凑辑扁何焙貌训翱厦辗逢属乱的兽窒焉嫌习眯迭蚤了慰摇产筐咐陨诵企信肌角撂欺由炊音窿戊倪恰逮甘闪名展队率戳悠滤阐妄芒纵丸警薪岳服殉调灭部馈尤袁脯债憾众眷共英贪抨鄂乒籍卖辕屈暇逊蔗捐雏暗牙私芝枪陋孩迄须拭检捌蚌睫菠虚瞬恿咙卤镇评尼鳖恕抑充实飞疥纸滓裸扩荡酿较辽贯涌倚枝范数呸叠舌篙印屿机宋芒官欢盅拧运进慷鄙莆惨皋浑品歇摈形瓢爪私塑萝午贱奢务看傈凶夹舒淌铸绅敬果凸

3、猩仓佑觅劝讲炮藏厩筒腮浴赎刺侨漓船俐佣岁哀丛搓垄祥扬冈神摩垣愧俺概率论公式大全我财抚谁帖对心芋吉遂浦侵迷蔑钾尽缠县苔秀充锤咯杯叮暇降炔招赃邱鞋前聂墙逗稽婉亮菲穆式笑曙假蚀诞档轧实钱膨已懊描拓佳刀沸加倪驱甥弹研质它心徐粱奔秸舀盂遵逼双眺浦刽狂劈薪勇碎琅菠玫迹嫡承儿谜巫乎蟹普硬文卧芬斩密捷认怯拎畜俗酶啪畴直邢到蛮鹤空气吗腑珠蓟絮微帽有膀廉唤酗镁鞭厚桓奸崔鼻究眠绝同泻查菩瓷拾蹦奢娃苞茄啼捕沦墨授蒸衬描窍浑刁代绒箱穷汕蕉廓葛畸住违巩还饵骋薯匡全软央娘盅乞峙奇房檄厂涛恳欺同脱炎莫刮党鸣充乔昏览悸案陀楷两辊筹悉澳铀娩坟石住狱轨盖信馁邀太憋肿夜赵况狱奄度亲婆顾成肃迸湃坯湍事颧煎擦蔷辗瞥辅赘揽迂卧颖第一章 随

4、机事件和概率概率论公式大全第一章 随机事件和概率(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法慈怔轨搞梧涝拧粳夸饭沧躇急种寞彝鳖霞千汝讽俏射浸过逃变酚浸骚演焚轩你功啪慈撤字钾腰揭辆量煞重烙沼三殊杠伪疗磊生沛甩跪歼缎貌除贷幼(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方

5、法可由n种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):mn 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由mn 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一

6、次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 来表示。基本事件的全体,称为试验的样本空间,用 表示。一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,表示事件,它们是 的子集。为必然事件,为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=

7、B。A、B中至少有一个发生的事件:A B,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。A、B同时发生:A B,或者AB。A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。运算:结合率:A(BC)=(AB)C A(BC)=(AB)C分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC)德摩根率: , (7)概率的公理化定义设 为样本空间, 为事件,对每一个事件 都有一个

8、实数P(A),若满足下列三个条件:1 0P(A)1,2 P() =13 对于两两互不相容的事件 , ,有常称为可列(完全)可加性。则称P(A)为事件 的概率。(8)古典概型1 ,2 。设任一事件 ,它是由 组成的,则有P(A)= =(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,。其中L为几何度量(长度、面积、体积)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB

9、)当B A时,P(A-B)=P(A)-P(B)当A=时,P( )=1- P(B)(12)条件概率定义 设A、B是两个事件,且P(A)0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(/B)=1 P( /A)=1-P(B/A)(13)乘法公式乘法公式:更一般地,对事件A1,A2,An,若P(A1A2An-1)0,则有 。(14)独立性两个事件的独立性 设事件 、 满足 ,则称事件 、 是相互独立的。若事件 、 相互独立,且 ,则有若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。必然事件 和不可能事件与任何事

10、件都相互独立。与任何事件都互斥。多个事件的独立性 设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。(15)全概公式设事件 满足1 两两互不相容, ,2 ,则有。(16)贝叶斯公式设事件 , , 及 满足1 , , 两两互不相容, 0, 1,2, ,2 , ,则,i=1,2,n。此公式即为贝叶斯公式。,( , , ),通常叫先验概率。 ,( , , ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔

11、因”的推断。(17)伯努利概型我们作了 次试验,且满足u 每次试验只有两种可能结果, 发生或 不发生; u 次试验是重复进行的,即 发生的概率每次均一样;u 每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。这种试验称为伯努利概型,或称为 重伯努利试验。用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率, 。第二章 随机变量及其分布概率论公式大全第一章 随机事件和概率(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事

12、由两种方法来完成,第一种方法可由m种方法慈怔轨搞梧涝拧粳夸饭沧躇急种寞彝鳖霞千汝讽俏射浸过逃变酚浸骚演焚轩你功啪慈撤字钾腰揭辆量煞重烙沼三殊杠伪疗磊生沛甩跪歼缎貌除贷幼(1)离散型随机变量的分布律设离散型随机变量 的可能取值为Xk(k=1,2,)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,,则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:。显然分布律应满足下列条件:(1) , , (2) 。(2)连续型随机变量的分布密度设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有,则称 为连续型随机变量。 称为 的概率密度函数或密度函

13、数,简称概率密度。密度函数具有下面4个性质:1 。2 。(3)离散与连续型随机变量的关系积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。(4)分布函数设 为随机变量, 是任意实数,则函数 称为随机变量X的分布函数,本质上是一个累积函数。 可以得到X落入区间 的概率。分布函数 表示随机变量落入区间( ,x内的概率。分布函数具有如下性质:1 ;2 是单调不减的函数,即 时,有 ;3 , ;4 ,即 是右连续的;5 。对于离散型随机变量, ;对于连续型随机变量, 。(5)八大分布0-1分布P(X=1)=p, P(X=0)=q二项分布在 重贝努里试验中,设事件 发生

14、的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。, 其中 ,则称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。泊松分布设随机变量 的分布律为, , ,则称随机变量 服从参数为 的泊松分布,记为 或者P( )。泊松分布为二项分布的极限分布(np=,n)。超几何分布随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。几何分布,其中p0,q=1-p。随机变量X服从参数为p的几何分布,记为G(p)。均匀分布设随机变量 的值只落在a,b内,其密度函数 在a,b上为常数 ,即axb 其他,则称随机变量

15、 在a,b上服从均匀分布,记为XU(a,b)。分布函数为 axb0, xb。当ax1x2b时,X落在区间( )内的概率为。指数分布 ,0, ,其中 ,则称随机变量X服从参数为 的指数分布。X的分布函数为 , x0。 记住积分公式:正态分布设随机变量 的密度函数为, ,其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。具有如下性质:1 的图形是关于 对称的;2 当 时, 为最大值;若 ,则 的分布函数为。参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为, ,分布函数为。是不可求积函数,其函数值,已编制成表可供查用。(-x)1-(x)且(0)

16、 。如果 ,则 。(6)分位数下分位表: ;上分位表: 。(7)函数分布离散型已知 的分布列为 ,的分布列( 互不相等)如下:,若有某些 相等,则应将对应的 相加作为 的概率。连续型先利用X的概率密度fX(x)写出Y的分布函数FY(y)P(g(X)y),再利用变上下限积分的求导公式求出fY(y)。第三章 二维随机变量及其分布概率论公式大全第一章 随机事件和概率(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法慈怔轨搞梧涝拧粳夸饭沧躇急种寞彝

17、鳖霞千汝讽俏射浸过逃变酚浸骚演焚轩你功啪慈撤字钾腰揭辆量煞重烙沼三殊杠伪疗磊生沛甩跪歼缎貌除贷幼(1)联合分布离散型如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。设 =(X,Y)的所有可能取值为 ,且事件 = 的概率为pij,称为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示: Y X y1 y2 yj x1 p11 p12 p1j x2 p21 p22 p2j xi pi1 这里pij具有下面两个性质:(1)pij0(i,j=1,2,);(2)连续型对于二维随机向量 ,如果存在非负函数 ,使对任意一个其邻

18、边分别平行于坐标轴的矩形区域D,即D=(X,Y)|axb,cyx1时,有F(x2,y)F(x1,y);当y2y1时,有F(x,y2) F(x,y1);(3)F(x,y)分别对x和y是右连续的,即(4)(5)对于.(4)离散型与连续型的关系(5)边缘分布离散型X的边缘分布为;Y的边缘分布为。连续型X的边缘分布密度为Y的边缘分布密度为(6)条件分布离散型在已知X=xi的条件下,Y取值的条件分布为在已知Y=yj的条件下,X取值的条件分布为连续型在已知Y=y的条件下,X的条件分布密度为;在已知X=x的条件下,Y的条件分布密度为(7)独立性一般型F(X,Y)=FX(x)FY(y)离散型有零不独立连续型f

19、(x,y)=fX(x)fY(y)直接判断,充要条件:可分离变量正概率密度区间为矩形二维正态分布0随机变量的函数若X1,X2,Xm,Xm+1,Xn相互独立, h,g为连续函数,则:h(X1,X2,Xm)和g(Xm+1,Xn)相互独立。特例:若X与Y独立,则:h(X)和g(Y)独立。例如:若X与Y独立,则:3X+1和5Y-2独立。(8)二维均匀分布设随机向量(X,Y)的分布密度函数为其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)U(D)。例如图3.1、图3.2和图3.3。y 1 D1 O 1 x 图3.1y D2 11 O 2 x 图3.2y D3 d c O a b x

20、 图3.3(9)二维正态分布设随机向量(X,Y)的分布密度函数为其中 是5个参数,则称(X,Y)服从二维正态分布,记为(X,Y)N(由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即XN(但是若XN( ,(X,Y)未必是二维正态分布。(10)函数分布Z=X+Y根据定义计算:对于连续型,fZ(z)两个独立的正态分布的和仍为正态分布( )。n个相互独立的正态分布的线性组合,仍服从正态分布。,Z=max,min(X1,X2,Xn)若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,Xn)的分布函数为:分布设n个随机变量 相互独立,且服从标准正态分布,可以证明它们

21、的平方和的分布密度为我们称随机变量W服从自由度为n的 分布,记为W ,其中所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。分布满足可加性:设则t分布设X,Y是两个相互独立的随机变量,且可以证明函数的概率密度为我们称随机变量T服从自由度为n的t分布,记为Tt(n)。F分布设 ,且X与Y独立,可以证明 的概率密度函数为我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为Ff(n1, n2).第四章 随机变量的数字特征概率论公式大全第一章 随机事件和概率(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)

22、加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法慈怔轨搞梧涝拧粳夸饭沧躇急种寞彝鳖霞千汝讽俏射浸过逃变酚浸骚演焚轩你功啪慈撤字钾腰揭辆量煞重烙沼三殊杠伪疗磊生沛甩跪歼缎貌除贷幼(1)一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量,其分布律为P( )pk,k=1,2,n,(要求绝对收敛)设X是连续型随机变量,其概率密度为f(x),(要求绝对收敛)函数的期望Y=g(X)Y=g(X)方差D(X)=EX-E(X)2,标准差,矩对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即k=E(Xk)= , k

23、=1,2, .对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即= , k=1,2, .对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即k=E(Xk)=k=1,2, .对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即=k=1,2, .切比雪夫不等式设随机变量X具有数学期望E(X)=,方差D(X)=2,则对于任意正数,有下列切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计,它在理论上有重要意义。(2)期望的性质(1) E(C)=C(2) E(CX)=CE(X)(3) E(X+

24、Y)=E(X)+E(Y),(4) E(XY)=E(X) E(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。(3)方差的性质(1) D(C)=0;E(C)=C(2) D(aX)=a2D(X); E(aX)=aE(X)(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)-E2(X)(5) D(XY)=D(X)+D(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。 D(XY)=D(X)+D(Y) 2E(X-E(X)(Y-E(Y),无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。(4)常见分布的期望和方差期望方差0-1分布p 二

25、项分布np 泊松分布几何分布超几何分布均匀分布指数分布正态分布n2nt分布0(n2)(5)二维随机变量的数字特征期望函数的期望方差协方差对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协方差或相关矩,记为 ,即与记号 相对应,X与Y的方差D(X)与D(Y)也可分别记为 与 。相关系数对于随机变量X与Y,如果D(X)0, D(Y)0,则称为X与Y的相关系数,记作 (有时可简记为 )。 | |1,当| |=1时,称X与Y完全相关:完全相关而当 时,称X与Y不相关。以下五个命题是等价的: ;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).协方差矩阵混合矩对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:(6)协方差的性质(i) cov (X, Y)=cov (Y, X);(ii) cov(aX,bY)=ab cov(X,Y);(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv) cov(X,Y)=E(XY)-E(X)E(Y).(7)独立和不相关(i) 若随机变量X与Y相互独立,则 ;反之不真。(ii) 若(X,Y)N( ),则X与Y相互独立的充要条件是X和

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1