1、成功之道 公务员考试数学推理各种类题型精析 精华数学推理常见题型1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b 2)深一重模型,各数之间的差有规律,如 1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。 3)看各数的大小组合规律,作出合理的分组。如 7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们
2、看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。 4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+1410+119+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。 5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服
3、(个人感觉,嘿嘿),它们的规律就是23-2=6、33-3=24、43-4=60、53-5=120、63-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。 6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9172+8+6163+0+25,256+13269269+17286286+16302 下一个数为302+5307。 7)再复杂一点,如 0、1、
4、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。 8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。 数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。国家公务员考试中数学计算题分值
5、是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别) 补充: 1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略 如1/2、1/6、1/3、2、6、3、1/2 2)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉 如看到2、5、10、17,就应该想到是1、2、3、4的平方加1 如看到0、7、26、63,就要想到是1、2、3、4的立方减1 对平方数,个人觉得熟悉120就够了,对于立方数,熟悉110就够了,而且涉及到平方、立 方的数列往往
6、数的跨度比较大,而且间距递增,且递增速度较快 3)A2BC因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来 如数列5,10,15,85,140,7085 如数列5, 6, 19, 17 , 344 , 55 如数列5,15,10,215,115 这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看 4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项 如数列1,8,9,64,25,216 奇数位1、9、25 分别是1、3、5的平方 偶数位8、64、216是2、4、6的立方 先补充到这儿。 5) 后数是前面各数之
7、各,这种数列的特征是从第三个数开始,呈2倍关系 如数列:1、2、3、6、12、24 由于后面的数呈2倍关系,所以容易造成误解! 公务员数学推理的十大规律0 规律一:等差数列及其变式 【例题】7,11,15,( ) A19 B20 C22 D 25 【答案】A选项 【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。 (一)等差数列的变形一: 【例题】7,11,16,22,( ) A28 B2
8、9 C32 D33 【答案】B选项 【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X, 我们发现数值之间的差值分别为4,5,6,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。即答案为B选项。 (二)等差数列的变形二: 【例题】7,11,13,14,( ) A15 B14.5 C16 D17 【答案】B选项【解析】这也
9、是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。假设第五个与第四个数字之间的差值是X。 我们发现数值之间的差值分别为4,2,1,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。即答案为B选项。 (三)等差数列的变形三: 【例题】7,11,6,12,( ) A5 B4 C16 D15 【答案】A选项 【解析】这也是一个典型的等差数列的变形,即后面的数字
10、与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X。 我们发现数值之间的差值分别为4,-5,6,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5。即答案为A选项。 (三)等差数列的变形四: 【例题】7,11,16,10,3,11,( ) A20 B8 C18 D15 【答案】A选项 【解析】这也是最后一种典型的等差数列的变
11、形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。 总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。即答案为A选项。规
12、律二:等比数列及其变式 【例题】4,8,16,32,( ) A64 B68 C48 D54 【答案】A选项 【解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。那么在此基础上,我们对未知的一项进行推理,即322=64,第五项应该是64。 (一)等比数列的变形一: 【例题】4,8,24,96,( ) A480 B168 C48 D120 【答案】A选项 【解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个
13、数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。 我们发现“倍数”分别为2,3,4,X。很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为965=480。即答案为A选项。(二)等比数列的变形二: 【例题】4,8,32,256,( ) A4096 B1024 C480 D512 【答案】A选项 【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数
14、字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。 我们发现“倍数”分别为2,4,8,X。很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为25616=4096。即答案为A选项。 (三)等比数列的变形三: 【例题】2,6,54,1428,( ) A118098 B77112 C2856 D4284 【答案】A选项 【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二
15、个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27。假设第五个与第四个数字之间“后项”与“前项”的倍数为X 我们发现“倍数”分别为3,9,27,X。很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为142881=118098。即答案为A选项。(四)等比数列的变形四: 【例题】2,-4,-12,48,( ) A240 B-192 C96 D-240 【答案】A选项 【解析】这也是一个典
16、型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X 我们发现“倍数”分别为-2,3,-4,X。很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此李老师认为我们可以推出X=5,即第五个数为485=240,即答案为A选项。规律三:求和相加式的数列 规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规
17、律的数列,以下李老师和大家一起来探讨该类型的数列 【例题】56,63,119,182,() A301 B245 C63 D364 【答案】A选项 【解析】这也是一个典型的求和相加式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119。同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确。规律四:求积相乘式的数列 规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列 【例题
18、】3,6,18,108,() A1944 B648 C648 D198 【答案】A选项 【解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18。同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。规律五:求商相除式数列 规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列 【例题】800,40,20,2,() A10 B2 C1 D4 【答案】A选项
19、【解析】这是一个典型的求商相除式的数列,即“第一项除以第二项等于第三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20。同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。备考规律四:求积相乘式的数列 规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列规律六:立方数数列及其变式 【例题】8,27,64,( ) A125 B128 C68 D101 【答案】A选项 【广州新东方戴斌解析】这是一个典型的“立方数”的数
20、列,即第一项是2的立方,第二项是3的立方,第三项是4的立方,同理我们推出第四项应是5的立方。所以A选项正确。 (一)“立方数”数列的变形一: 【例题】7,26,63,( ) A124 B128 C125 D101 【答案】A选项 【解析】这是一个典型的“立方数”的数列,其规律是每一个立方数减去一个常数,即第一项是2的立方减去1,第二项是3的立方减去1,第三项是4的立方减去1,同理我们推出第四项应是5的立方减去1,即第五项等于124。所以A选项正确。 题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个
21、变形: 【例题变形】9,28,65,( ) A126 B128 C125 D124 【答案】A选项 【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个常数,即第一项是2的立方加上1,第二项是3的立方加上1,第三项是4的立方加上1,同理我们推出第四项应是5的立方加上1,即第五项等于124。所以A选项正确。(二)“立方数”数列的变形二: 【例题】9,29,67,( ) A129 B128 C125 D126 【答案】A选项 【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。即第一项是2的立方加上1,第二项是3的立
22、方加上2,第三项是4的立方加上3,同理我们假设第四项应是5的立方加上X,我们看所加上的值所形成的规律是2,3,4,X,我们可以发现这是一个很明显的等差数列,即X=5,即第五项等于5的立方加上5,即第五项是129。所以A选项正确。规律七:求差相减式数列 规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列 【例题】8,5,3,2,1,( ) A0 B1 C-1 D-2 【答案】A选项 解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。我们看第一项8与第二项5的差等于第三项3;第二项5与第三
23、项3的差等于第三项2;第三项3与第四项2的差等于第五项1; 同理,我们推敲,第六项应该是第四项2与第五项1的差,即等于0;所以A选项正确。规律八:“平方数”数列及其变式 【例题】1,4,9,16,25,() A.36 B.28 C.32 D.40 【答案】A选项 【解析】这是一个典型的“立方数”的数列,即第一项是1的平方,第二项是2的平方,第三项是3的平方,第四项是4的平方,第五项是5的平方。同理我们推出第六项应是6的平方。所以A选项正确。 (一)“平方数”数列的变形一: 【例题】0,3,8,15,24,() A.35 B.28 C.32 D.40 【答案】A选项 【解析】这是一个典型的“立方
24、数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方减去1,第二项是2的平方减去1,第三项是3的平方减去1,第四项是4的平方减去1,第五项是5的平方减去1。同理我们推出第六项应是6的平方减去1。所以A选项正确。题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。就上面那道题目而言,同样可以做一个变形: 【例题变形】2,5,10,17,26,() A.37 B.38 C.32 D.40 【答案】A选项 【解析】这是一个典型的“平方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方加上1,第二项是2的平方加上1,
25、第三项是3的平方加上1,第四项是4的平方加上1,第五项是5的平方加上1。同理我们推出第六项应是6的平方加上1。所以A选项正确。 (二)“平方数”数列的变形二: 【例题】2,6,12,20,30,() A.42 B.38 C.32 D.40 【答案】A选项 【解析】这就是一个典型的“平方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。即第一项是1的平方加上1,第二项是2的平方加上2,第三项是3的平方加上3,第四项是4的平方加上4,第五项是5的平方加上5。同理我们假设推出第六项应是6的平方加上X。而把各种数值摆出来分别是:1,2,3,4,5,X。由此我们可以得出X
26、=6,即第六项是6的平方加上6,所以A选项正确。规律九:“隔项”数列 【例题】1,4,3,9,5,16,7,() A.25 B.28 C.10 D.9 【答案】A选项 【解析】这是一个典型的“各项”的数列。相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。单数的项分别是:1,3,5,7。这是一组等差数列。而双数的项分别是4,9,16,()。这是一组“平方数”的数列,很容易我就可以得出(?)应该是5的平方,即A选项正确。 【规律点拨】这类数列无非是把两组数列“堆积”在一起而已,李老师认为只要考生的眼睛稍微“跳动”一下,则很容易就会发现两组规律。当然还有其他更多的变形可能性,由于本文篇幅限
27、制,详细请看广州新东方学校公务员频道(http:/gwy.gznos.org/)。 规律十:混合式数列 【例题】1,4,3,8,5,16,7,32,( ),() A.9,64 B.9,38 C.11,64 D.36,18 【答案】A选项 【解析】这是一个典型的要求考生填两个未知数字的题目。同样这也是“相隔”数列的一种延伸,但这种题型,李老师认为考生未来还是特别留意这种题型,因为将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。所以大家还是认真总结这类题型。 我们看原数列中确实也是由两组数列结合而成的。单数的项分别是:1,3,5,7,()。很容易
28、我们就可以得出(?)应该是9,这是一组等差数列。 而双数的项分别是4,8,16,32,(?)。这是一组“等比”的数列,很容易我们就可以得出(?)应该是32的两倍,即64。所以,A选项正确。【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,( ),(),() A.9,64,36 B.9,38,32 C.11,64,30 D.36,18,38 【答案】A选项 【解析】这就是将来数字推理的不断演变,有可能出现3个数列相结合的题型,即出现要求考生填写3个未知数字的题型。这里有三组数列, 首先是第一,第四,第七,第十项,第十三项组成的数列:1,3,5,7,(?), 很容易我们就可以得出(?)应该是9,这是一组等差数列。 其次是第二,第五,第八,第十一项,第十四项组成的数列:4,8,16,32,(?)。这是一组“等比”的数列,很容易我们就可以得出(?)应该是32的两倍,即64。 再次是第三,第六,第九,第十二项,第十五项组成的数列:4,9,16,25,(?),这是一组“平方数”的数列,很容易我们就可以得出(?)应该是6的平方,即64。 所以A选项正确转载于:恩点论坛 查看原文:
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1