ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:65.89KB ,
资源ID:6847861      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6847861.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(厌氧好氧工艺治理柠檬酸废水.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

厌氧好氧工艺治理柠檬酸废水.docx

1、厌氧好氧工艺治理柠檬酸废水厌氧好氧工艺治理柠檬酸废水柠檬酸的生产是通过发酵工艺进行的,其排放的废水含有高浓度的可生物降解有机物,这些有机物多以碳水化合物及其降解产物为主。世界各国对于柠檬酸废水的处理大都采用厌氧好氧联合处理工艺,而这一工艺的核心厌氧处理单元,除了采用厌氧接触工艺和厌氧滤 器外,应用最多的还是70年代末开始用于食品发酵工业废水处理的UASB厌氧反应器工艺。 1999年10月,某柠檬酸厂(现改名为某生化有限公司)柠檬酸废水治理工程通过了山东省环保局主持的工程验收,工程验收期间厌氧工段CODCr容积负荷Nv8.0kgCODCr/(m3d),去除率达93.2%,工程CODCr总去除率达

2、98.0%。目前运行稳定,效果良好。现将该工程情况做简要介绍。 1 水质、水量的确定 根据企业现有排水管路,所排放的废水主要包括浓废水和淡废水两部分,浓废水主要包括废糖水原液和洗糖水。排放废水处理后要求达到污水综合排放标准GB 89781996味精工业二级标准,废水水质、水量及排放标准详见表1。 表1 废水水质、水量及排放标准 排放废水水量(m3/d)PH值CODcr(mg/L)BOD5(mg/L)SS(mg/L)氨氮(mg/L)浓废水7005-5.516000650045060淡废水7005.5-6.0150065040010合计14008750(均值)3750(均值)425(均值)35(均

3、值)标准值6-9300150200252 工程设计 2.1 工艺流程 由车间排放的浓废水自流至浓水调节池,调节pH后由污水泵提升至UASB反应器,出水一部分回流至浓水调节池,它与UASB反应器形成集调节、厌氧降解为一体的处理系统;一部分自流至曝气调节池与淡废水混合,经曝气后由污水泵提升至沉淀池形成一级好氧系统;此时沉淀池出水已近达标,再自流至接触氧化池、气浮池进行好氧生化和物化处理(见图1)。 2.2 设计参数的确定 工程设计中着重强化厌氧处理单元,同时好氧工段采用较低的负荷,以稳定剩余污泥,减少污泥排放量,改善污泥脱水性能,具体设计参数见表2。 3 处理效果和处理成本 3.1 处理效果 工程

4、属省控污染治理项目,山东省环保局委托泰安市环保监测站于1999年10月8日9日进行了为期两天的现场采样、监测。监测项目为pH、CODCr、BOD5、SS、NH3-N、流量共6项,监测频率每天采样4次,均测单样,监测结果见表3。 表处理设施设计参数 设施名称参数附属设备备注浓水调节池HRTh简易石灰中和筛现石灰投加量200kg/d污水泵N=7.5kw,一用一备UASB反应器NV=8.0kgCOD/(m3.d)q=2.25-0.5m3/(m2.h)三相分离器均匀布水器设备自制曝气调节池HRT=.5hNV=3.2kgCOD/(m3.d)微孔曝气器共300只污水泵N=7.5kw,二用一备竖流式沉淀池H

5、RT=3.5hq=1.0m3/(m2.h)污泥回流比R=30%-35%接触氧化池HRT=20hNV=1.0kgCOD/(m3.d)微孔曝气器共500只组合填料共800m3气浮池处理量Q=60m3/h溶气系统、加药系统等机房建筑面积=200m2风机N=55kw,利用原有建筑物污泥浓缩池有效容积=200m3污泥浓缩机因资金所限未上均质池有效容积=25m3泥浆泵污泥干化池干化面积=200m2表3 污水处理工程监测结果 监测点位监测指标PHCODcr(mg/L)BOD5(mg/L)SS(mg/L)氨氮(mg/L)流量(m3/d)浓废水入口最高值5.8920400816447269.0890最低值4.6

6、611000439539149.2430平均值5.4316388655542161.0675淡废水入口最高值5.47638526233926.0871最低值4.3418266893.9644平均值5.2114815191535.2750总排口最高值7.5422020.91040.6971656最低值6.8012611.2560.3381124平均值7.1217015.6770.4651425标准值6-930015020025 监测结果表明,治理工程设计合理,处理效果明显,排污口废水中的污染物达到国家规定的相应排放标准。 3.2 处理成本 工程总投资307万元,处理成本主要包括动力费,人员工资、

7、福利,药剂费,工程折旧和设施维修费等,其经济技术指标见表4。 表工程经济技术指标 工程规模(m3/d)工程投资(万元)工程占地(m2)总处理成本(元m3)直接费用(元m)定员(人)COD削减总量(t/d)电耗(kw.h/m3)140030732001.200.591910.20.934 工程特点 工程设计中结合水力澄清池和IC厌氧反应器的特点对进液布水系统进行了精心的研究,采用8套均匀布水系统(每套服务面积36m2,可独立操作运行,通过人工控制可灵活调节各布水系统水力负荷,也可使整个系统形成脉冲进水);为提高局部进水点的流速,增强系统布水均匀性,设计采用较小的开孔比(15%)以形成污泥与进液间

8、充分的接触、最大限度地利 用反应器内的污泥和有效容积,防止反应器内形成沟流和死角;对于三相分离器,设计成双层分离隔板,采用适宜的表面负荷q=0.250.5m3/(m2h)和较低的出水堰负荷qL=0.080.16L/(ms),使三相分离器能保留尽可能多的污泥和排放沼气,提高出水净化效果。 由于工程在设计中较好地解决了均匀布水、三相分离等问题,UASB反应器的出水水质澄清、呈青灰色(感官与城市生活污水相似),COD去除率高(平均去除率达94.9%),启动周期短、调试迅速(三个月),污泥床内形成了颗粒污泥(质软、有韧性,粒径在0.51.5mm之间),污泥沉降性能好。整个工程具备以下特点: 生化处理(

9、厌氧、好氧单元)始终处于较高的处理水平,固液分离效果明显,总排口CODCr去除率达98.5%,BOD5去除率达99.6%,SS去除率达97.3%,氨氮去除率达99.0%。 工程厌氧处理系统对温度变化适应性强。整个调试期间水温在2555 间变化,厌氧处理单元都能达到满意的处理效果。由于生产过程中排放的废水水温较高(80 ),根据气温变化,可通过调节淡废水水量将厌氧反应池内的水温控制在适宜的范围内,设计中不需另考虑 热交换设施。 工程厌氧处理系统抗冲击负荷能力强。生产过程中排放的废水量大、呈周期性变化,浓废水CODCr浓度从40000mg/L到5000mg/L不等,每班(8h)为一变化周期,瞬时C

10、OD容积负荷从3kgCOD/(m3d)到35 kgCOD/(m3d)变化,但只要日平均容积负荷约为8 kgCODCr/(m3d),厌氧出水水质就能稳定在1 000 mg/L左右,因此,总排口出水水质波动不大。接触氧化池出水中有机污染物多以溶解状态存在,经气浮处理COD去除率不高(15%),故企业实际运行中气浮设施基本不开,只有当接触氧化池出水COD200mg/L时才启动气浮设施,实际运行费用较表4所列数据低。 由于进水COD以溶解状态存在,且绝大多数COD是通过厌氧反应去除的,而好氧工段采用 较低的负荷,虽然调节曝气池容积负荷较高3.2 kgCOD/(m3d),但因活性污泥浓度较高MLSS=6

11、500mg/L),其污泥负荷并不高0.49 kgCOD/(kgMLSSd),故剩余污泥排放量较低,沉淀池每天排放污泥20m3,厌氧剩余污泥自调试以来(半年)共排放80m3。 5 经验与总结 柠檬酸废水浓度高,厌氧反应池处理效果的好坏是整个工程造价和运行成本高低的关键,为此本工程采用并强化了运行稳定、效果优良的UASB厌氧处理技术,以最大程度 地提高厌氧处理元的CODCr去除率。 以瓜干为原料的发酵废水通过生化处理可以达到较高的COD去除率,但废水中的色度很难解决,最终出水经混凝气浮也难以达到满意的效果,物化工段色度去除率30%,氯氧化或臭氧氧化因成本过高未采用,因此工程最终出水澄清但呈黄色,与

12、淡茶水相似。柠檬酸废水pH较低、呈酸性,在进入UASB前(特别是调试初期)应对其进行调节,使废水呈中性。原设计采用变速中和滤塔调节来水pH,由于企业资金紧张,故尝试在浓水调节池上改用简易石灰筛网。实践表明,该设施运行简单、效果稳定、成本较低,宜于在中、小型废水治理工程中使用。厌氧好氧交替工艺生物除磷及活性污泥特殊染色 近年来,水体磷污染状况日益严重,由此导致了水体富营养化。除磷是水污染治理的重要课题,是克服富营养化的关键。生物除磷比化学除磷运行费用低,不造成二次污染,除磷效率高。本文以SBR艺为手段研究了周期循环变化的厌氧好氧交替工艺(Alternation of Aerobic/Anaero

13、bic Process,简称AAA工艺)的生物除磷技术,使其在低能耗、低成本的条件下,既能稳定高效除磷,又能去除有机物。对采用活性污泥直接染色,通过显微镜镜检活性污泥细胞内PHB、Polyp的状况,来监测生物除磷效果的方法进行了研究。 1 厌氧好气交替工艺生物除磷试验1.1 实验装置(见图1)1.2 实验方法AAA法的运行可分为进水、厌氧搅拌、好氧曝气、沉淀、排水和闲置六个阶段,通过控制反应时间等条件来强化聚磷菌过量摄取过程的完成。1.3 实验内容本组实验模拟AAA工艺生物除磷技术,采用葡萄糖基质作为唯一碳源,在不同碳磷比下的实验结果,见表1。表1不同碳磷比生物除磷数据mgL-1序号指标配水厌

14、氧0.0h厌氧0.5h厌氧1.0h厌氧1.5h好氧1.0h好氧2.0h好氧3.0h好氧4.0h出水1COD256.5225.1216.0152.3140.755.747.443.039.437.8PO43-P9.1212.9714.0719.5623.3014.299.786.815.716.482COD506.0450.8432.5343.7297.1153.795.666.561.760.5PO43-P14.5215.2115.2718.0620.8511.048.364.942.452.283COD560.8444.0151.056.754.351.147.645.646.046.0PO

15、43-P12.5812.9019.4623.8724.3017.1010.364.311.851.654COD392.7319.5242.4232.270.360.543.437.833.333.0PO43-P1.0010.2113.4314.3216.538.046.233.321.361.00取表1中第1、3组数据的厌氧段作图为图2。试验结果表明,经过1.5h厌氧后,磷的释放基本达到最大,此时COD降解也基本完成。好氧阶段在34h内就可以达到最大的磷吸收量,以后再增加好氧时间,出水磷浓度不再降低,这说明此时无论是污泥的内源基质还是外源基质均已消耗殆尽。由此综合考虑除磷效果和经济指标,本实验

16、确定厌氧时间为1.5h,好氧时间为4h。2 活性污泥直接特殊染色监测研究在活性污泥法中,聚磷菌是生物除磷的主要完成者,许多研究者都发现聚磷菌体内能聚集聚磷(Polyphosphate)即Polyp和聚羟基丁酸(polyhydroxybutyrate)即PHB(细菌细胞内储存能量的脂质内含物)。通常,在厌氧条件下,污泥菌胶团的聚磷逐渐消失,PHB逐渐增多。在好氧条件下,PHB迅速减少,聚磷迅速增加。厌氧条件下合成的PHB越多,则好氧条件下聚磷合成量越大,除磷效果越佳1。在厌氧条件下,活性污泥聚磷菌细胞体内有大量PHB迅速合成。进入好氧区内,聚磷菌消耗大量内含物PHB颗粒和外源机质,产生细菌质子移

17、动力,简称pmf。pmf在释磷和吸磷时,即磷在细胞内外的转移过程中起决定性作用。为了维持pmf的恒定,聚磷菌通过消耗pmf把胞外的磷以中性或电阳性的形式主动运输到细胞内合成三磷酸腺甙(ATP),合成聚磷酸盐。在好氧状态下,细胞储存的PHB降解代谢,为生物合成提供碳,并通过TCA循环(三羧酸循环)产生ATP,为合成细胞物质及细胞活动和聚磷酸盐的大量合成提供能量。因而在好氧条件下,活性污泥聚磷菌细胞吸收磷,使废水中磷高效去除。活性污泥聚磷菌细胞中的PHB和Polyp颗粒在生物除磷中发挥了重要的作用,在生物除磷工艺中,对活性污泥样品中的PHB和Polyy颗粒进行染色,发现在厌氧区(氧化还原电位在-1

18、40mV以下)污泥细胞内PHB颗粒迅速、大量增加,聚磷酸盐颗粒迅速减少;在好氧区(氧化还原电位在100mV以上)污泥细胞内PHB颗粒迅速减少,聚磷酸盐颗粒迅速增加。因此可以通过对活性污泥直接染色,观测活性污泥细胞的PHB和聚磷颗粒的变化,从而判断生物除磷效果。细胞是无色、透明的,在光学显微镜下,不易看清细菌的形态和结构,故通常要对活性污泥进行分高纯化,然后用染料染色,以增强菌体与背景的反差,便于在光学显微镜下观察,步骤繁琐,时间长且成本高。PHB和聚磷作为细菌细胞的内含物在光学显微镜下无法观察,但由于其在生物除磷系统中的重要作用,本实验采用了一种特殊的染色方法,可将活性污泥直接染色,在光学显微

19、镜下清楚地观测到活性污泥细胞内的PHB及聚磷颗粒。2.1 PHB染色取活性污泥于载玻片上制成膜,用0.3的乙烯乙二醇苏丹黑溶液染色515min;冲洗并风干;在二甲苯溶液中浸沾数次,提出并风干;用0.5的碱性藏红染料溶液反染色510s;冲洗、风干,显微镜观察。PHB染色结果为显示兰黑色颗粒,其细胞质部分显粉红色,镜检照片见图3。2.2 Polyp染色取活性污泥于载玻片上制成膜,用甲基蓝溶液染色1030s;自来水冲洗,风干,显微镜观察。Polyp染色结果为显示深蓝色颗粒,其细胞质部分显示为浅蓝色,镜检照片见图4。2.3 活性污泥直接染色结果对活性污泥直接染色的研究结果表明,在好氧厌氧交替生物除磷中

20、,污泥吸收和释放磷的基本情况与污水中的溶解氧及氧化还原电位有着一定的关系。在厌氧过程中,当氧化还原电位低于-140mV此时污水中溶解氧含量很低,对污水中活性污泥进行染色能发现大量的PHB存在,说明活性污泥细菌细胞内磷的含量低,处于磷的释放阶段;当污水中有少量氧存在,即此时氧化还原电位为-140-100mV,污泥细菌细胞的染色表明其中PHB的含量减少;当对污泥进行曝气,形成好氧阶段,水中溶解氧增加,氧化还原电位高于100mV,对污泥细菌细胞进行染色表明,PHB含量极低,几乎难以染色出来,证明细菌细胞大量吸收了磷。3 结论AAA法运行灵活,很容易通过控制反应时间、泥龄及曝气强度等条件来强化聚磷菌过

21、量摄取过程的顺利完成。在进水初期反应器内有机物浓度很高,不仅很快消耗了剩余的溶解氧形成厌氧状态,而且为释磷提供了充分的碳源;在好氧反应阶段,有机物浓度已大大降低,容易维持反应器内高溶解氧浓度,同时也为细菌储备能源的利用提供了途径。另外,在此过程中,厌氧与好氧状态的交替,充分抑制了专性好氧丝状菌的过量繁殖,避免污泥膨胀现象的发生。活性污泥直接染色方法简单、快速(大约5min)、准确,便于生物除磷污水厂日常监测应用。由于它们可监测到活性污泥细胞内的分子水平状况,所以,该指标的监控结果将更直接、更准确地反映厌氧段、缺氧段、好氧段的氧化还原电位情况,及各阶段的溶解氧状况和生物除磷效果。本实验研究表明,在厌氧条件下,污泥菌胶团的污泥磷大量消失,PHB大量增加。好氧条件下,大量吸收磷的同时PHB迅速减少,聚磷迅速增加。厌氧条件下合成的PHB越多,好氧条件下聚磷合成量越大。由于聚磷菌以主动运输的方式逆浓度梯度将污水中的磷运输到细胞质中,因此可大量吸收磷,达到较高的除磷效果。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1